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 In order to handle the continuously growing functionality in embedded systems, model-based 

approaches have been established in the development process over the last years. For singlecore 

architectures, model-based development has increased efficiency of development and software 
quality. Current trends show that embedded systems will change to multicore architectures within 

this decade. 
In this paper, we argue for a work-efficient migration from single- to multicore architectures 

through a model-based development process. Concerning the modeling of software and hardware 

components, we propose relevant properties of an architecture description language. Regarding 
the design phase, we show how simulation technology can be used for schedulability examination 
supporting engineers for system design decisions. Afterwards we extend the simulation approach 

by Monte-Carlo parametrization. Finally we evaluate the enhanced approach in a case study, 
located in the automotive powertrain domain.  
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1  Introduction 

 
The embedded systems domain, like the desktop computing domain, is facing the challenge of 

a rapid increase in software functions and software complexity of their applications. While the 
desktop computing domain already has changed to multicore architectures to satisfy this demand, 

the embedded domain is on the way to follow. Since the introduction of multicore processors to 
embedded systems in the year 2006, the demand in the embedded domain has raised drastically 
[12]. 

In embedded systems, multicore processor architectures increase the complexity of embedded 
software. Furthermore multithreading aggravates the issue of complexity due to the complex 
interactions among multiple threads [16]. 

Two of the main properties of embedded systems are temporal requirement satisfaction, 
namely deadline compliance, and resource efficiency, namely processing and memory capacity. 

For being able to fulfill both properties for future embedded systems, which will employ 
multicore technology, the software architecture design decisions are fundamental. 

In order to alleviate the problem of high complexity in embedded software systems, which 

will become even more essential for multicore embedded software design, and have a 
meaningfull way to express architecture design decisions, we argue for a model-based software 

development process. 
In this work, we discuss the required system model and an appropriate schedulability 

examination method to achieve these objectives. 

In the following, we present a possible software architecture model for future embedded 
multicore systems. Afterwards we extend necessary properties of architecture description 
languages. These are used as input for a simulation based schedulability examination, which 

examines the compliance of temporal requirements. We give a brief overview on theoretica l work 
regarding schedulability tests and why these cannot be applied in the same way for multicore 

systems as for today's singlecore systems. Then we show how a Monte-Carlo approach can be 
combined with simulation studies to evaluate software design decis ions. Finally, we demonstrate 
the practical use of our approach by an evaluation of adequate scheduling algorithms for a 

quadcore system in the automotive powertrain domain. 
 

2  A Model for Multicore Real-Time Systems 

  
The accuracy of the analysis of an embedded system's temporal properties depends on the 

precision of the system model. This system model includes a task set model  , a processor model 

 , and a scheduler model  . 
The task set model   describes the temporal properties of the software application. These 

properties are the activation behavior, the execution time, and temporal requirements. 
Most task set models define the activation behavior in a way that the activation of each task is 

independent of other tasks. However, many embedded systems have multiple time bases, e.g. 
Flexray, CAN, or other time bases1, also referred to as clocks. Task activation patterns are 

defined concerning this time base. Time base variation results in changing activation patterns of 
tasks in global time. Additionally, the limitation of time base variation limits the number of 
possible activation patterns in global time. The proposed multiple time base (MTB) task set 

model [7] allows to model these task activation dependencies. In the following, we discuss the 

                                                 
1
E.g. in an automotive powertrain system the position of the crank shaft. 



MTB model by use of an example. 

In a typical automotive engine control system, two main sources of task activation exist. The 
first source is a periodic trigger, which activates tasks with different constant recurrences. The 

other source is the crank shaft of the engine, which activates tasks depending on the engine 
rotation speed. Analyzing such systems with a periodic task set model[17] is not possible, 
because the drifting behavior of the crank shaft activated tasks is not represented. Analyzing such 

systems with a sporadic task set model [19] will produce too pessimistic results, because the 
sporadic theorem assumes all tasks to be activated at the same time, which is, in a typical 

automotive engine control system, prevented by task offsets. 
At a MTB task set model, tasks refer to a time base of the system. All tasks concerning the 

same time base have a defined (but possible variable) phasing in their activation compared to all 

other tasks referring to this time base. 
A task set of tasks, belonging to the MTB task system is defined in the following way: 
 

Definition 2.1 A task set   consists of a number of tasks   .  

                             
 

 
Definition 2.2 A task    is defined by a tuple  

                  
 
  where the elements of the tuple are the task properties: minimal task recurrence  , first 

task instance offset  , worst-case execution time  , deadline  , and a reference to a time 

base   .    
 

 
Definition 2.3 A time base    is defined by the tuple  

                                           
 
 The properties describe the transformation between the clock of the time base        and the 

clock of the unique global time        . The frequency multiplier         equates the clock 

ratio 
   

 
 and the angular phase shift         equates an incremental time shift between time 

base time and global time. For simplification, at time    :         for all   . For time 

   , following transformation has to be applied:  

                           (1) 
 

Definition 2.4 For the time base properties, the following restrictions exist:  
                     
 

                     
 

By definition, the frequency multiplier         cannot be smaller then 1, therefore      is 

the minimal recurrence and can be used for calculation of task utilization. Through a shared 
reference of two tasks    and    on the same time base   , the activation of both is no longer 

independent. Assuming a periodic activation in relation to the time base, the inter-arrival time of 
both tasks changes by the same factor         or shifts with the same value        . 

A further extension of the MTB task set model is a split of the task    into task sections   
 . 



 

 

Definition 2.5 A task    is split into a number of task sections   
                   . 

According to the task execution time      and the task section execution time   
    the 

following relation exists.  

      ∑   
     

    

 

Definition 2.6 All task sections are sequentially dependent. Therefore, task section   
  

cannot be executed before the task section   
  has finished its execution, if     and 

             .  

 
  

 
Figure  1: Visualization of a task    with its task sections   

  and its requested data 

        and sent data         for the task sections                  . 
   

Figure 1 visualizes a task, its task sections, and the data a  task section consumes and produces. 
This task section architecture has a benefit in comparison to common task architectures, because 

the position where data is produced and consumed during task execution can be explicitly 
modeled on task section level. The idea behind this approach assumes on the one hand an 
arbitrary amount of local data during the execution of a task section. On the other hand, it 

assumes a lower amount of inter-task-section data sharing. For the case of cooperative2 multicore 
scheduling, e.g. used in the algorithm P-ERfair-PD² [7], this is beneficial with respect to context 
switching overheads in comparison with preemptive3 scheduling algorithms, e.g. global EDF. 

For the processor model, we assume a symmetric processor model, mentioned as multicore 
 . A multicore        (               ) has   identical processing resources   . 

Each processor    has the same processing frequency and all tasks of the task set   are 

potentially able to execute on all   . Further extensions include core-specific processing 

frequencies, used for dynamic voltage/frequency scaling. 
The scheduler model   describes the assignment of all jobs4, generated by tasks of the task 

set   at activation, to the processor  . Multicore real-time scheduling generally distinguish 
between local and global scheduling approaches. At local scheduling, a heuristic allocates tasks 

before runtime to a core, subsequently a singlecore scheduling approach can be applied. At global 
scheduling, there is one single queue of ready tasks and the scheduling approach assigns them 

during runtime to available cores. Both groups can be subdivided according to priority 

                                                 
2
Cooperation means that a task is  only able to preempt other task at task section end. 

3
Preemptive means that a task is able to preempt other task at arbitrary position. 

4
A job is the instance of a task, generated at task activation. 



assignment policies. At task-fix scheduling each job of a task has the same priority. At job-fix 

scheduling, the jobs of a task can have different priorities, but the priority of one job is static. At 
job-section-fix scheduling the priority of different task sections can differ, but for one task 

section the priority is static. At dynamic scheduling, the priority can differ at any time. For 
further classification see [8]. 

The next chapter gives a brief overview of appropriate architecture description languages for 

embedded systems. Then we discuss how these could be extended to have a common format for 
multicore system models. 

 

3  Extending Architecture Description Languages 
 

 A key challenge in the development of embedded systems is that of managing their 
complexity while ensuring the required quality. As one important means to handle complexity, 

architecture description languages (ADLs) have emerged as a means to formally describe 
software and hardware architectures. Furthermore, they provide a basis for the analysis of system 
properties such as reliability or performance. 

Over the recent years a number of solutions for the modeling and description of embedded 
systems have been developed including  

  
    • UML [22], SysML [21] and MARTE [18] developed and standardized by the Object  
      Management Group (OMG)  

    • EAST-ADL [6] developed in the automotive industry  
    • the SAE Architecture Analysis and Design Language (AADL) [20] standardized in    
      2004 by the SAE  

    • and various domain-specific languages (DSL) and model transformation techniques.  
 

 
With the introduction of multicore systems to the embedded domain, new requirements for the 

modeling and description of embedded systems emerge. These requirements include:  

  
    • modeling of multicore hardware components including heterogeneous cores with  

      variable processing speed,  
    • comprehensive execution time models, e.g. expressed by probability distributions,  
    • support for the annotation of scheduling policies.  

 
 
While general modeling languages (e.g. UML or SysML) could be extended to support the 

modeling and description of embedded multicore systems [15], we decided to adapt a 
domain-specifc modeling language for the use in our approach. The decision is based on the 

flexibility of the SAE AADL standard to extend the language via specific properties and 
sublanguage extensions as well as the various analysis capabilities the SAE AADL supports for a 
single specified model. Furthermore, the SAE AADL is an acknowledged industry-standard for 

the modeling and analysis of applications and execution platforms in the embedded domain. In 
the following, a brief introduction to the SAE AADL is provided. Afterwards, we describe 
extensions to the language, which support the simulation approach in Section 4. 

 
 



 

3.1  SAE AADL 

 

The SAE Architecture Analysis and Design Language (AADL) [20] is a textual and 
graphical language used to model and analyze the software and hardware architecture of 
embedded systems. It describes the structure of such systems as an assembly of software 

components mapped onto a hardware platform. Furthermore it is used to describe functional 
interfaces to components (such as data inputs and outputs) and performance-critical aspects of 

components (such as temporal requirements), which is a crucial requirement for the analysis of 
real-time systems.  

The standard does not specify how detailed the design of the architecture or the 

implementation of software and hardware components has to be. It allows different levels of 
abstraction within one model. Furthermore, AADL may be used in conjunction with existing 

standard languages in these areas (e.g. via an existing UML profile). The AADL describes 
interfaces and properties of hardware components including processors, memory, communication 
channels, and devices interfacing with the external environment. Detailed designs for such 

hardware components may be specified by associating source text written in a hardware 
description language such as VHDL. The AADL can describe interfaces and properties of 
application software components implemented in source text, such as threads, processes, and 

runtime configurations.  
The language includes a standardized XML interchange format based on a Meta model 

specification of AADL to facilitate model interchange and integration of analytical models and 
supporting tools. 

The purpose of the SAE AADL is to provide a standard and sufficiently precise (machine- 

processable) way of modeling the architecture of an embedded real-time system, such as an 
automotive system or avionic system, to permit analysis of its properties and to support the 

predictable integration of its implementation [13]. It provides a framework for system modeling 
and analysis, facilitates the automation of code generation and other development activit ies, and 
aims to significantly reduce design and implementation errors.  

The AADL core language is designed to be extensible to accommodate analyses of the 
runtime architectures that the core language does not completely support. Extensions can take the 
form of new properties and analysis specific notations or unique hardware attributes that can be 

associated with components. 
 

3.2  Property Extensions to SAE AADL 

 
In this section, we present selected properties of the newly defined property set for the 

modeling of embedded multicore systems. 
While SAE AADL provides means for modeling the hardware platform (e.g. processor or 

memory), it does not provide the possibility for the modeling or mapping of software 
components, tasks or interrupt service routines, onto a number of cores of a multicore processor. 

We extended the properties of the standard execution platform component processor to 

support the modeling of heterogeneous multicores5. 
In Listing 1, an excerpt of the definition of the new properties is shown. In addition to the 

Cores property that defines a core of a processor, the possibility of adding a quartz to each core 

                                                 
5
A further extension is the mapping of software components to resource owner which provide means to distribute 

software components to cores. Due to the space limitations of this paper, this will be considered in future work.  



(Quartz), as well as defining the quartz frequency and the core instructions per quartz tick are 

defined. The mapping allows to assign quartzes to specific cores. Additionally, it is possible to 
configure scheduling policies. 

 

 
Listing 1: Selected multicore extension of SAE AADL 

 

With these additional properties and the standard scheduling annotations of the SAE AADL, 
the modeling of a multicore system is possible. In Listing 2 an example modeling of the hardware 
is shown. The processor multicore.dualcore has two cores which each have a mapping to the 

same quartz. The cores (Cores.core0/1) can be annotated with specific properties as defined in 
Listing 1.  

 



 
Listing 2: Modeling of a dualcore processor in SAE AADL 

 
After the system is modeled in SAE AADL and annotated with the multicore properties, it can 

be used as an input for the scheduling simulation. In addition to the scheduling analysis, this 

specified single SAE AADL model can be analyzed for multiple qualities e.g. availability and 
reliability, security or resource consumption. 

 

4  Simulation-based Schedulability Examination at Software 

Design Phase 

  
Schedulability tests concern the problem of testing, whether a scheduling algorithm   is able 

to assign a task set   on a certain processor architecture   in a way that all deadlines are met. 

For singlecore or multiple processor systems, a multitude of schedulability tests are available. 
In addition, these tests are also available for complex event task activation patterns which are 

expressed by arrival curves [5] or hierarchical inter-task activation [1]. These tests are designed 
based on two assumptions: The critical instant (CI) theorem, originally introduced by [2], 
roughly speaking says that the worst-case response time occurs when all tasks are activated 

simultaneously. The worst-case execution time (WCET) assumption says, if a task set fulfills all 
deadlines with its worst-case execution time, it also fulfills all deadlines when the execution 

times are smaller. 
These assumptions allow to reduce the validation space to determine the worst case response 

time. They are valid for singlecore systems with task-fix and job-fix priority assignment. 

For multicore systems, no finite collection of worst-case job arrival sequences has been 
identified for global scheduling of sporadic task systems [4]. For dynamically and globally 



scheduled multicore systems, it is not guaranteed that the worst case response time happens under 

WCET and CI assumption [14]. 
Therefore, analytical schedulability approaches, which are available for singlecore systems, 

are not applicable for multicore systems with global dynamic scheduling algorithms. For task 
systems with small integer values for task periods and task execution times, Baker et al. [3] 
introduced a brute-force approach, which performs an exhaustive search of a very large state 

space to determine whether a sporadic task set is schedulable by a global fixed task-priority or 
global EDF scheduling. Unfortunately, this approach results in a state explosion when analyzing 

practical systems due to a higher granularity of task execution times and task periods. 
In [9] an alternative approach based on a discrete event simulation was introduced. During 

the simulated time, a task    generates a number of jobs (i.e. instances)     , which are assigned 

to cores by a scheduler model. To examine the schedulability of a task set  , job release times 

and job execution times are modified in their valid range to approximate the worst case response 
times. 

The valid range of the release time depends on the task arrival model and the time base of the 
task. Since the arrival model6 defines a task recurrence      in the time of the time base, the 

transformation of equation (1) has to be applied to activate a task at the correct global time. 
The valid range of the execution time depends on the execution time model. At the classical 

WCET model, the job execution time             for all jobs     , whereas      is the  -th 

instance of the  -th task. Because the maximal execution time does not necessarily represent the 

worst case at global and dynamic scheduled multicore systems7, the complete range of execution 
times has to be considered. In the simulation, the execution time variation occurs with respect to 

a probability function for each task section execution time   
   , which has at least an upper and 

lower bound of execution times. 
As result of the simulation, a trace contains all state transitions of the simulation. This trace is 

required for the schedulability examination. We consider the transitions when the  -th job of the 
 -th task has its finishing time      and when the job has its deadline     . With these time 

stamps, the compliance of all temporal requirements can be analyzed by determining the 
maximum normed lateness  mNL of a task set  . 

First of all the lateness         of the     job of task    is calculated by  

                                                     

        is equivalent to the time left until reaching the deadline. The lateness is negative when 

the finishing time      is smaller than the absolute deadline     , i.e. if the task has finished in 

time. 
To determine the task-deadline compliance for a complete task set, we normalize the lateness 

        with the relative deadline    of the task    and identify the job which yields the largest 

normalized lateness for each task. We denote the maximum of that value of all tasks in a task set 

  as maximal normed lateness       .  

           
    

(
       

  
) (2) 

 
 

                                                 
6
The recurrence   can be used to represent a periodic offset based arrival model from Section 2, or to represent the 

inter arrival time between two successive activation of any other arrival model. 
7
This is also mentioned as non-predictability, see [14] for details. 



5  Statistical Analysis of Randomized Parameter Sets 

 
The introduced method for simulation-based schedulability examination analyzes a system 

model with one task set  , one multicore processor  , and one scheduler  . Design decisions 

on one of these three components often have to fit for multiple variants of the other components. 
For example, the task set   differs from project to project, but the selection of processor or 

scheduler should be the same for all projects. 
In [9], a statistical method for sensitivity analysis of system characteristic was introduced. In 

this method, based on stochastical description of system components and Monte-Carlo 

parametrization, randomized parameter sets are generated and simulated. 
In this work, we use this approach to compare two scheduling approaches for multicore 

systems. We apply a stochastic task set description which generalizes todays automotive 
powertrain applications, scheduled on a quad-core processor (   ). The case study compares 

two scheduling algorithms with regard to the maximal deadline violation for each task set, 
expressed through       . 

For the sensitivity analysis, we apply the following process: 
  

    • Pseudo random generation of task sets     according to stochastic task set description.  

    • Simulation and determination of quality metric (e.g.           for deadline  
      compliance evaluation) for all generated task sets     and for all scheduling algorithms  .  

    • Clustering of task sets according to a system characteristic (e.g. utilization      ∑   
  

  
  

      for efficiency evaluation) in equally sized clusters over the task set characteristic.  

    • Determination of statistical estimators for clustered system characteristic (e.g. upper 1%   
      quantil, median, lower 99% quantil) and calculation of confidence intervals with  
      bootstrapping approach [11]  

    • Visualization of the results in a diagram  
 

6  Case Study 

 
The objective of this case study is a comparison of the two global scheduling algorithms 

global EDF (gEDF) and P-ERfair-PD² for multiple task sets, originating from a stochastic task 
set description. 

A comparable study on a dual-core processor [9] showed that P-ERfair-PD² a global 
multicore scheduling algorithm with job fix priorities, allows a system utilization of nearly     , 

whereas WFD-EDF, a local scheduling algorithm with Bin-Packing heuristic and job fixed 
priority scheduling, has a multitude of deadline violations, when system utilization exceeds     . 

In this work, we use the stochastic task set definition from [7], with an extension of 
scheduling execution times of 2    for each scheduler call. We compare gEDF with 

P-ERfair-PD²  multicore scheduling on a quad-core processor. gEDF stores ready tasks in a 
single queue and assigns priorities by Earliest Deadline First manner. EDF is known to be 

non-optimal for the global case. Reasons are certain task sets that fail at very low processor 
utilizations, essentially leaving all but one processor idle nearly all of the time, also known as 

Dhall's effect [10]. 



 
               Algorithm gEDF                          Algorithm P-ERfair-PD²  

Figure 2: Sensitivity analysis of schedulability of 1000 randomly generated task sets. The 
x-axis shows system utilization and the y-axis shows       . As long         , all 

deadlines are met. 
   
The experiment results in Figure 2 show the        of 1000 randomly generated task sets. 

We generated task sets according to a stochastic task set description, but didn't discard task sets 

fulfilling Dhall's effect. The utilization      ∑      
    

    
 lies in the range         , whereby   

is equal a quad core system utilization of 100%. For statistical analysis, we divided the range of 
derived utilization values in    equally sized clusters. 

At gEDF, the first deadline violations enter at a utilization of     , whereby P-ERfair-PD² 

successfully schedules all task sets up to a utilization of    . Additionally, the range of        
variations is much lower at P-ERfair-PD², which indicates a higher predictability of 
schedulability at task set variation. 

P-ERfair-PD² has in average      times more scheduler calls 8  than gEDF. For the 

considered stochastic task set, P-ERfair-PD² has a schedulability bound which is       higher 

than gEDF's schedulability bound. Especially at high utilization, P-ERfair-PD² has a benefit, 
because it has more information of the taskset (namely minimal task activation and task 

execution time), and therefore is able to schedule jobs better than gEDF (which knows only task 
deadlines). 

 

7  Conclusion 

 

In this paper, we presented a possible software architecture model for embedded multicore 
systems, based on a multiple time base task set model, which allows the modeling of task 

activation dependencies. To model this software architecture with an industry-standard language 
notation, we extended the SAE AADL with properties to support the modeling and specification 
of embedded multicore systems. This AADL model can be used as an input for an automated 

simulation-based schedulability examination and supports, without further adaption, a number of 
additional architectural analyses. We showed how a Monte-Carlo approach can be combined with 
scheduling simulation to evaluate software design decisions for multicore systems. In a case 

study, we verified the practical application of our approach by a comparison of global multicore 
scheduling algorithms. 

                                                 
8
We chose for both scheduling algorithms an equal execution time, because the number of schedulable jobs is equal 

at both algorithms and both algorithms work with fixed job priorities (At P-ERfair-PD
 
, scheduling policies can 

simply be mapped statically to task sections). 
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