
Modeling and Simulation of Embedded Real-Time

Multicore Systems

Michael Deubzer1, Martin Hobelsberger1, Jürgen Mottok1, Frank Schiller2, Reiner Dumke3,
Markus Siegle4, Ulrich Margull5, Michael Niemetz6, Gerhard Wirrer6

 1University of Applied Sciences Regensburg,
LaS³, Faculty Electrical Engineering, P.O. Box 120327, D-93025 Regensburg,

{michael.deubzer,martin.hobelsberger,juergen.mottok}@hs-regensburg.de

2Technical University Munich,
itm, Boltzmannstr. 15, D-85748 Garching (Munich), schiller@itm.tum.de

3Otto-Von-Güricke University,
IVS, P.O. Box 4120, D-39106 Magdeburg, dumke@ivs.cs.uni-magdeburg.de

4University of German Federal Armed Forces,

Dept. of C. Sc., Werner-Heisenberg Weg 39, D-85577 Neubiberg, markus.siegle@unibw.de

51 mal 1 Software GmbH,
Maxstraße 31, D-90762 Fürth, ulrich.margull@1mal1.com

6Continental Automotive GmbH,

P.O. Box 100943, D-93009 Regensburg
{michael.niemetz,gerhard.wirrer}@continental-corporation.com

 In order to handle the continuously growing functionality in embedded systems, model-based

approaches have been established in the development process over the last years. For singlecore

architectures, model-based development has increased efficiency of development and software
quality. Current trends show that embedded systems will change to multicore architectures within

this decade.
In this paper, we argue for a work-efficient migration from single- to multicore architectures

through a model-based development process. Concerning the modeling of software and hardware

components, we propose relevant properties of an architecture description language. Regarding
the design phase, we show how simulation technology can be used for schedulability examination
supporting engineers for system design decisions. Afterwards we extend the simulation approach

by Monte-Carlo parametrization. Finally we evaluate the enhanced approach in a case study,
located in the automotive powertrain domain.

Keywords: Real-Time Systems, Multicore, Model-Driven Development, Architecture
Description Language, Simulation

mailto:schiller@itm.tum.de
mailto:dumke@ivs.cs.uni-magdeburg.de
mailto:markus.siegle@unibw.de
mailto:ulrich.margull@1mal1.com

1 Introduction

The embedded systems domain, like the desktop computing domain, is facing the challenge of

a rapid increase in software functions and software complexity of their applications. While the
desktop computing domain already has changed to multicore architectures to satisfy this demand,

the embedded domain is on the way to follow. Since the introduction of multicore processors to
embedded systems in the year 2006, the demand in the embedded domain has raised drastically
[12].

In embedded systems, multicore processor architectures increase the complexity of embedded
software. Furthermore multithreading aggravates the issue of complexity due to the complex
interactions among multiple threads [16].

Two of the main properties of embedded systems are temporal requirement satisfaction,
namely deadline compliance, and resource efficiency, namely processing and memory capacity.

For being able to fulfill both properties for future embedded systems, which will employ
multicore technology, the software architecture design decisions are fundamental.

In order to alleviate the problem of high complexity in embedded software systems, which

will become even more essential for multicore embedded software design, and have a
meaningfull way to express architecture design decisions, we argue for a model-based software

development process.
In this work, we discuss the required system model and an appropriate schedulability

examination method to achieve these objectives.

In the following, we present a possible software architecture model for future embedded
multicore systems. Afterwards we extend necessary properties of architecture description
languages. These are used as input for a simulation based schedulability examination, which

examines the compliance of temporal requirements. We give a brief overview on theoretica l work
regarding schedulability tests and why these cannot be applied in the same way for multicore

systems as for today's singlecore systems. Then we show how a Monte-Carlo approach can be
combined with simulation studies to evaluate software design decis ions. Finally, we demonstrate
the practical use of our approach by an evaluation of adequate scheduling algorithms for a

quadcore system in the automotive powertrain domain.

2 A Model for Multicore Real-Time Systems

The accuracy of the analysis of an embedded system's temporal properties depends on the

precision of the system model. This system model includes a task set model , a processor model

 , and a scheduler model .
The task set model describes the temporal properties of the software application. These

properties are the activation behavior, the execution time, and temporal requirements.
Most task set models define the activation behavior in a way that the activation of each task is

independent of other tasks. However, many embedded systems have multiple time bases, e.g.
Flexray, CAN, or other time bases1, also referred to as clocks. Task activation patterns are

defined concerning this time base. Time base variation results in changing activation patterns of
tasks in global time. Additionally, the limitation of time base variation limits the number of
possible activation patterns in global time. The proposed multiple time base (MTB) task set

model [7] allows to model these task activation dependencies. In the following, we discuss the

1
E.g. in an automotive powertrain system the position of the crank shaft.

MTB model by use of an example.

In a typical automotive engine control system, two main sources of task activation exist. The
first source is a periodic trigger, which activates tasks with different constant recurrences. The

other source is the crank shaft of the engine, which activates tasks depending on the engine
rotation speed. Analyzing such systems with a periodic task set model[17] is not possible,
because the drifting behavior of the crank shaft activated tasks is not represented. Analyzing such

systems with a sporadic task set model [19] will produce too pessimistic results, because the
sporadic theorem assumes all tasks to be activated at the same time, which is, in a typical

automotive engine control system, prevented by task offsets.
At a MTB task set model, tasks refer to a time base of the system. All tasks concerning the

same time base have a defined (but possible variable) phasing in their activation compared to all

other tasks referring to this time base.
A task set of tasks, belonging to the MTB task system is defined in the following way:

Definition 2.1 A task set consists of a number of tasks .

Definition 2.2 A task is defined by a tuple

 where the elements of the tuple are the task properties: minimal task recurrence , first

task instance offset , worst-case execution time , deadline , and a reference to a time

base .

Definition 2.3 A time base is defined by the tuple

 The properties describe the transformation between the clock of the time base and the

clock of the unique global time . The frequency multiplier equates the clock

ratio

 and the angular phase shift equates an incremental time shift between time

base time and global time. For simplification, at time : for all . For time

 , following transformation has to be applied:

 (1)

Definition 2.4 For the time base properties, the following restrictions exist:

By definition, the frequency multiplier cannot be smaller then 1, therefore is

the minimal recurrence and can be used for calculation of task utilization. Through a shared
reference of two tasks and on the same time base , the activation of both is no longer

independent. Assuming a periodic activation in relation to the time base, the inter-arrival time of
both tasks changes by the same factor or shifts with the same value .

A further extension of the MTB task set model is a split of the task into task sections
 .

Definition 2.5 A task is split into a number of task sections
 .

According to the task execution time and the task section execution time
 the

following relation exists.

 ∑

Definition 2.6 All task sections are sequentially dependent. Therefore, task section

cannot be executed before the task section
 has finished its execution, if and

 .

Figure 1: Visualization of a task with its task sections

 and its requested data

 and sent data for the task sections .

Figure 1 visualizes a task, its task sections, and the data a task section consumes and produces.
This task section architecture has a benefit in comparison to common task architectures, because

the position where data is produced and consumed during task execution can be explicitly
modeled on task section level. The idea behind this approach assumes on the one hand an
arbitrary amount of local data during the execution of a task section. On the other hand, it

assumes a lower amount of inter-task-section data sharing. For the case of cooperative2 multicore
scheduling, e.g. used in the algorithm P-ERfair-PD² [7], this is beneficial with respect to context
switching overheads in comparison with preemptive3 scheduling algorithms, e.g. global EDF.

For the processor model, we assume a symmetric processor model, mentioned as multicore
 . A multicore () has identical processing resources .

Each processor has the same processing frequency and all tasks of the task set are

potentially able to execute on all . Further extensions include core-specific processing

frequencies, used for dynamic voltage/frequency scaling.
The scheduler model describes the assignment of all jobs4, generated by tasks of the task

set at activation, to the processor . Multicore real-time scheduling generally distinguish
between local and global scheduling approaches. At local scheduling, a heuristic allocates tasks

before runtime to a core, subsequently a singlecore scheduling approach can be applied. At global
scheduling, there is one single queue of ready tasks and the scheduling approach assigns them

during runtime to available cores. Both groups can be subdivided according to priority

2
Cooperation means that a task is only able to preempt other task at task section end.

3
Preemptive means that a task is able to preempt other task at arbitrary position.

4
A job is the instance of a task, generated at task activation.

assignment policies. At task-fix scheduling each job of a task has the same priority. At job-fix

scheduling, the jobs of a task can have different priorities, but the priority of one job is static. At
job-section-fix scheduling the priority of different task sections can differ, but for one task

section the priority is static. At dynamic scheduling, the priority can differ at any time. For
further classification see [8].

The next chapter gives a brief overview of appropriate architecture description languages for

embedded systems. Then we discuss how these could be extended to have a common format for
multicore system models.

3 Extending Architecture Description Languages

 A key challenge in the development of embedded systems is that of managing their
complexity while ensuring the required quality. As one important means to handle complexity,

architecture description languages (ADLs) have emerged as a means to formally describe
software and hardware architectures. Furthermore, they provide a basis for the analysis of system
properties such as reliability or performance.

Over the recent years a number of solutions for the modeling and description of embedded
systems have been developed including

 • UML [22], SysML [21] and MARTE [18] developed and standardized by the Object
 Management Group (OMG)

 • EAST-ADL [6] developed in the automotive industry
 • the SAE Architecture Analysis and Design Language (AADL) [20] standardized in
 2004 by the SAE

 • and various domain-specific languages (DSL) and model transformation techniques.

With the introduction of multicore systems to the embedded domain, new requirements for the

modeling and description of embedded systems emerge. These requirements include:

 • modeling of multicore hardware components including heterogeneous cores with

 variable processing speed,
 • comprehensive execution time models, e.g. expressed by probability distributions,
 • support for the annotation of scheduling policies.

While general modeling languages (e.g. UML or SysML) could be extended to support the

modeling and description of embedded multicore systems [15], we decided to adapt a
domain-specifc modeling language for the use in our approach. The decision is based on the

flexibility of the SAE AADL standard to extend the language via specific properties and
sublanguage extensions as well as the various analysis capabilities the SAE AADL supports for a
single specified model. Furthermore, the SAE AADL is an acknowledged industry-standard for

the modeling and analysis of applications and execution platforms in the embedded domain. In
the following, a brief introduction to the SAE AADL is provided. Afterwards, we describe
extensions to the language, which support the simulation approach in Section 4.

3.1 SAE AADL

The SAE Architecture Analysis and Design Language (AADL) [20] is a textual and
graphical language used to model and analyze the software and hardware architecture of
embedded systems. It describes the structure of such systems as an assembly of software

components mapped onto a hardware platform. Furthermore it is used to describe functional
interfaces to components (such as data inputs and outputs) and performance-critical aspects of

components (such as temporal requirements), which is a crucial requirement for the analysis of
real-time systems.

The standard does not specify how detailed the design of the architecture or the

implementation of software and hardware components has to be. It allows different levels of
abstraction within one model. Furthermore, AADL may be used in conjunction with existing

standard languages in these areas (e.g. via an existing UML profile). The AADL describes
interfaces and properties of hardware components including processors, memory, communication
channels, and devices interfacing with the external environment. Detailed designs for such

hardware components may be specified by associating source text written in a hardware
description language such as VHDL. The AADL can describe interfaces and properties of
application software components implemented in source text, such as threads, processes, and

runtime configurations.
The language includes a standardized XML interchange format based on a Meta model

specification of AADL to facilitate model interchange and integration of analytical models and
supporting tools.

The purpose of the SAE AADL is to provide a standard and sufficiently precise (machine-

processable) way of modeling the architecture of an embedded real-time system, such as an
automotive system or avionic system, to permit analysis of its properties and to support the

predictable integration of its implementation [13]. It provides a framework for system modeling
and analysis, facilitates the automation of code generation and other development activit ies, and
aims to significantly reduce design and implementation errors.

The AADL core language is designed to be extensible to accommodate analyses of the
runtime architectures that the core language does not completely support. Extensions can take the
form of new properties and analysis specific notations or unique hardware attributes that can be

associated with components.

3.2 Property Extensions to SAE AADL

In this section, we present selected properties of the newly defined property set for the

modeling of embedded multicore systems.
While SAE AADL provides means for modeling the hardware platform (e.g. processor or

memory), it does not provide the possibility for the modeling or mapping of software
components, tasks or interrupt service routines, onto a number of cores of a multicore processor.

We extended the properties of the standard execution platform component processor to

support the modeling of heterogeneous multicores5.
In Listing 1, an excerpt of the definition of the new properties is shown. In addition to the

Cores property that defines a core of a processor, the possibility of adding a quartz to each core

5
A further extension is the mapping of software components to resource owner which provide means to distribute

software components to cores. Due to the space limitations of this paper, this will be considered in future work.

(Quartz), as well as defining the quartz frequency and the core instructions per quartz tick are

defined. The mapping allows to assign quartzes to specific cores. Additionally, it is possible to
configure scheduling policies.

Listing 1: Selected multicore extension of SAE AADL

With these additional properties and the standard scheduling annotations of the SAE AADL,
the modeling of a multicore system is possible. In Listing 2 an example modeling of the hardware
is shown. The processor multicore.dualcore has two cores which each have a mapping to the

same quartz. The cores (Cores.core0/1) can be annotated with specific properties as defined in
Listing 1.

Listing 2: Modeling of a dualcore processor in SAE AADL

After the system is modeled in SAE AADL and annotated with the multicore properties, it can

be used as an input for the scheduling simulation. In addition to the scheduling analysis, this

specified single SAE AADL model can be analyzed for multiple qualities e.g. availability and
reliability, security or resource consumption.

4 Simulation-based Schedulability Examination at Software

Design Phase

Schedulability tests concern the problem of testing, whether a scheduling algorithm is able

to assign a task set on a certain processor architecture in a way that all deadlines are met.

For singlecore or multiple processor systems, a multitude of schedulability tests are available.
In addition, these tests are also available for complex event task activation patterns which are

expressed by arrival curves [5] or hierarchical inter-task activation [1]. These tests are designed
based on two assumptions: The critical instant (CI) theorem, originally introduced by [2],
roughly speaking says that the worst-case response time occurs when all tasks are activated

simultaneously. The worst-case execution time (WCET) assumption says, if a task set fulfills all
deadlines with its worst-case execution time, it also fulfills all deadlines when the execution

times are smaller.
These assumptions allow to reduce the validation space to determine the worst case response

time. They are valid for singlecore systems with task-fix and job-fix priority assignment.

For multicore systems, no finite collection of worst-case job arrival sequences has been
identified for global scheduling of sporadic task systems [4]. For dynamically and globally

scheduled multicore systems, it is not guaranteed that the worst case response time happens under

WCET and CI assumption [14].
Therefore, analytical schedulability approaches, which are available for singlecore systems,

are not applicable for multicore systems with global dynamic scheduling algorithms. For task
systems with small integer values for task periods and task execution times, Baker et al. [3]
introduced a brute-force approach, which performs an exhaustive search of a very large state

space to determine whether a sporadic task set is schedulable by a global fixed task-priority or
global EDF scheduling. Unfortunately, this approach results in a state explosion when analyzing

practical systems due to a higher granularity of task execution times and task periods.
In [9] an alternative approach based on a discrete event simulation was introduced. During

the simulated time, a task generates a number of jobs (i.e. instances) , which are assigned

to cores by a scheduler model. To examine the schedulability of a task set , job release times

and job execution times are modified in their valid range to approximate the worst case response
times.

The valid range of the release time depends on the task arrival model and the time base of the
task. Since the arrival model6 defines a task recurrence in the time of the time base, the

transformation of equation (1) has to be applied to activate a task at the correct global time.
The valid range of the execution time depends on the execution time model. At the classical

WCET model, the job execution time for all jobs , whereas is the -th

instance of the -th task. Because the maximal execution time does not necessarily represent the

worst case at global and dynamic scheduled multicore systems7, the complete range of execution
times has to be considered. In the simulation, the execution time variation occurs with respect to

a probability function for each task section execution time
 , which has at least an upper and

lower bound of execution times.
As result of the simulation, a trace contains all state transitions of the simulation. This trace is

required for the schedulability examination. We consider the transitions when the -th job of the
 -th task has its finishing time and when the job has its deadline . With these time

stamps, the compliance of all temporal requirements can be analyzed by determining the
maximum normed lateness mNL of a task set .

First of all the lateness of the job of task is calculated by

 is equivalent to the time left until reaching the deadline. The lateness is negative when

the finishing time is smaller than the absolute deadline , i.e. if the task has finished in

time.
To determine the task-deadline compliance for a complete task set, we normalize the lateness

 with the relative deadline of the task and identify the job which yields the largest

normalized lateness for each task. We denote the maximum of that value of all tasks in a task set

 as maximal normed lateness .

(

) (2)

6
The recurrence can be used to represent a periodic offset based arrival model from Section 2, or to represent the

inter arrival time between two successive activation of any other arrival model.
7
This is also mentioned as non-predictability, see [14] for details.

5 Statistical Analysis of Randomized Parameter Sets

The introduced method for simulation-based schedulability examination analyzes a system

model with one task set , one multicore processor , and one scheduler . Design decisions

on one of these three components often have to fit for multiple variants of the other components.
For example, the task set differs from project to project, but the selection of processor or

scheduler should be the same for all projects.
In [9], a statistical method for sensitivity analysis of system characteristic was introduced. In

this method, based on stochastical description of system components and Monte-Carlo

parametrization, randomized parameter sets are generated and simulated.
In this work, we use this approach to compare two scheduling approaches for multicore

systems. We apply a stochastic task set description which generalizes todays automotive
powertrain applications, scheduled on a quad-core processor (). The case study compares

two scheduling algorithms with regard to the maximal deadline violation for each task set,
expressed through .

For the sensitivity analysis, we apply the following process:

 • Pseudo random generation of task sets according to stochastic task set description.

 • Simulation and determination of quality metric (e.g. for deadline
 compliance evaluation) for all generated task sets and for all scheduling algorithms .

 • Clustering of task sets according to a system characteristic (e.g. utilization ∑

 for efficiency evaluation) in equally sized clusters over the task set characteristic.

 • Determination of statistical estimators for clustered system characteristic (e.g. upper 1%
 quantil, median, lower 99% quantil) and calculation of confidence intervals with
 bootstrapping approach [11]

 • Visualization of the results in a diagram

6 Case Study

The objective of this case study is a comparison of the two global scheduling algorithms

global EDF (gEDF) and P-ERfair-PD² for multiple task sets, originating from a stochastic task
set description.

A comparable study on a dual-core processor [9] showed that P-ERfair-PD² a global
multicore scheduling algorithm with job fix priorities, allows a system utilization of nearly ,

whereas WFD-EDF, a local scheduling algorithm with Bin-Packing heuristic and job fixed
priority scheduling, has a multitude of deadline violations, when system utilization exceeds .

In this work, we use the stochastic task set definition from [7], with an extension of
scheduling execution times of 2 for each scheduler call. We compare gEDF with

P-ERfair-PD² multicore scheduling on a quad-core processor. gEDF stores ready tasks in a
single queue and assigns priorities by Earliest Deadline First manner. EDF is known to be

non-optimal for the global case. Reasons are certain task sets that fail at very low processor
utilizations, essentially leaving all but one processor idle nearly all of the time, also known as

Dhall's effect [10].

 Algorithm gEDF Algorithm P-ERfair-PD²

Figure 2: Sensitivity analysis of schedulability of 1000 randomly generated task sets. The
x-axis shows system utilization and the y-axis shows . As long , all

deadlines are met.

The experiment results in Figure 2 show the of 1000 randomly generated task sets.

We generated task sets according to a stochastic task set description, but didn't discard task sets

fulfilling Dhall's effect. The utilization ∑

 lies in the range , whereby

is equal a quad core system utilization of 100%. For statistical analysis, we divided the range of
derived utilization values in equally sized clusters.

At gEDF, the first deadline violations enter at a utilization of , whereby P-ERfair-PD²

successfully schedules all task sets up to a utilization of . Additionally, the range of
variations is much lower at P-ERfair-PD², which indicates a higher predictability of
schedulability at task set variation.

P-ERfair-PD² has in average times more scheduler calls 8 than gEDF. For the

considered stochastic task set, P-ERfair-PD² has a schedulability bound which is higher

than gEDF's schedulability bound. Especially at high utilization, P-ERfair-PD² has a benefit,
because it has more information of the taskset (namely minimal task activation and task

execution time), and therefore is able to schedule jobs better than gEDF (which knows only task
deadlines).

7 Conclusion

In this paper, we presented a possible software architecture model for embedded multicore
systems, based on a multiple time base task set model, which allows the modeling of task

activation dependencies. To model this software architecture with an industry-standard language
notation, we extended the SAE AADL with properties to support the modeling and specification
of embedded multicore systems. This AADL model can be used as an input for an automated

simulation-based schedulability examination and supports, without further adaption, a number of
additional architectural analyses. We showed how a Monte-Carlo approach can be combined with
scheduling simulation to evaluate software design decisions for multicore systems. In a case

study, we verified the practical application of our approach by a comparison of global multicore
scheduling algorithms.

8
We chose for both scheduling algorithms an equal execution time, because the number of schedulable jobs is equal

at both algorithms and both algorithms work with fixed job priorities (At P-ERfair-PD

, scheduling policies can

simply be mapped statically to task sections).

Acknowledgment

 This work is supported by BMBF grant DynaS³ ("Dynamische SW-Architekturen in
Steuergeräten in Fahrzeugsystemen unter Berücksichtigung von Anforderungen zur Funktiona len

Sicherheit") FKZ1752X07. More information at www.LaS3.de.

References

[1] Albers, K. and Bodmann, F. and Slomka, F. Hierarchical event streams and event

dependency graphs: A new computational model for embedded real-time systems. 18th
Euromicro Conference on Real-Time Systems, pages 10, 2006.

[2] Audsley, N. C. and Burns, A. and Richardson, M. and Tindell, K. and Wellings, A.J.

Applying new scheduling theory to static priority pre-emptive scheduling. Software
Engineering Journal, 8(5):284, 1993.

[3] Baker, T. P. and Cirinei, M. Brute-force determination of multiprocessor schedulability for

sets of sporadic hard-deadline tasks. 10th International Conference on Principles of
Distributed Systems, (0509131):62-75, 2007.

[4] Baruah, S. K. Techniques for Multiprocessor Global Schedulability Analysis. 28th IEEE
International Real-Time Systems Symposium (RTSS 2007), :119-128, 2007.

[5] Chakraborty, S. and Kuenzli, S. and Thiele, L. A general framework for analysing system

properties in platform-based embedded system designs. Proc. 6th Design, Automation and
Test, :190-195, 2003.

[6] Cuenot, P. and Chen, D.J. and Gérard, S. and Lönn, H. and Reiser, M.O. and Servat, D. and
Sjöstedt, C.J. and Kolagari, R.T. and Törngren, M. and Weber, M. Managing complexity of
automotive electronics using the East-ADL.

[7] Deubzer, M. and Mottok, J. and Margull, U. and Niemetz, M. Efficient Scheduling of
Reliable Automotive Multi-core Systems with PD² by Weakening ERfair Task System
Requirements. Proceedings of the Automotive Safety & Security 2010, pages 5--67, 2010.

[8] Deubzer, M. and Schiller, F. and Mottok, J. and Niemetz, M. and Margull, U. Effizientes
Multicore-Scheduling in Eingebetteten Systemen - Teil 1: Algorithmen für zuverlässige

Echtzeitsysteme. atp, Automatisierungstechnische Praxis, 2010.
[9] Deubzer, M. and Schiller, F. and Mottok, J. and Niemetz, M. and Margull, U. Effizientes

Multicore-Scheduling in Eingebetteten Systemen - Teil 2: Ein simulationsbasierter Ansatz

zum Vergleich von Scheduling-Algorithmen. atp, Automatisierungstechnische Praxis, 2010.
[10] Dhall, SK. Scheduling periodic-time-critical jobs on single processor and multiprocessor

computing systems. PhD thesis, University of Illinois at Urbana-Champaign Champaign,
1977.

[11] Efron, B. and Tibshirani, R. An introduction to the bootstrap. Chapman & Hall/CRC, 1993.

[12] Heikkila, E. and Gulliksen, J. E. Multi-Core Computing in Embedded Applications: Global
Market Opportunity and Requirements Analysis. Venture Development Corporation
Embedded Hardware and Systems Practice, 2007.

[13] Feiler, P.H. and Lewis, B.A. and Vestal, S. The SAE architecture analysis & design
language (aadl) a standard for engineering performance critical systems. 2006 IEEE

Computer Aided Control System Design, 2006 IEEE International Conference on Control
Applications, 2006 IEEE International Symposium on Intelligent Control, pages 1206-1211,
2006.

[14] Ha, R. and Liu, J.W.S. Validating timing constraints in multiprocessor and distributed

real-time systems. International Conference on Distributed Computing Systems, pages
162-162, 1994. Citeseer.

[15] Hsiung, P.A. and Lin, S.W. and Tseng, C.H. and Lee, T.Y. and Fu, J.M. and See, W.B.
VERTAF: An application framework for the design and verification of embedded real-time
software. Software Engineering, IEEE Transactions on, 30(10):656-674, 2004.

[16] Lee, E.A. The problem with threads. Computer, 39(5):33-42, 2006.
[17] Liu, C. L. and Layland, J. W. Scheduling Algorithms for Multiprogramming in a

Hard-Real-Time Environment. Journal of the ACM, 20(1):46-61, 1973.
[18] MARTE OMG. Specification. A UML Profile for MARTE, Beta 1. 2007.
[19] Mok, A.K.L. Fundamental Design Problems of Distributed Systems for the Hard-Real-Time

Environment. PhD thesis, Massachusetts Institute of Technology, 1983.
[20] SAE. Architecture Analysis & Design Language. SAE standard AS5506, 2004.
[21] SysML OMG. Specification 1.0. 2008.

[22] UML OMG. specification 2.0., http://www.Omg.org/technology/documents/formal/uml.
htm, 2005.

Authors

Dipl.-Ing. (FH) Michael Deubzer is research assistent at the Laboratory for Safe
and Secure Systems (www.LaS3.de) working in the research project DynaS³. He
is a PhD student at Technical University Munich.

Dipl.-Inf. (FH) Martin Hobelsberger is research assistent at the Laboratory for

Safe and Secure Systems (www.LaS3.de) working in the research project DynaS³.
He is a PhD student at Otto-von-Guericke-University Magdeburg.

Prof. Dr. rer. nat. Jürgen Mottok is professor of software engineering, computer
languages, operating systems and safety at the University of Applied Sciences
Regensburg. He is the head of the Laboratory for Safe and Secure Systems (www.

LaS3.de).

Prof. Dr.-Ing. Frank Schiller is professor of automation engineering at the chair of

information technology in mechanical engineering at the Technical University
Munich. His reaseach interests are in the field of modeling and simulation of

mechatronic systems as well as reliability and safety analysis of mechatronic
systems and automotive software systems.

http://www.las3.de/

Prof. Dr.-Ing. Markus Siegle is professor of computer science at the
Universität der Bundeswehr München. He is working on

methods and tools for model-based performance and dependability
evaluation of computer and communication systems.

Prof. Dr.-Ing. habil. Reiner Dumke is professor of software engineering and head
of the Institute for Distributed Systems at the Otto-von-Guericke-University
Magdeburg.

Dr. rer. nat. Michael Niemetz is expert for software architecture at the Continental

Automotive GmbH in Regensburg at the Powertrain Engine Systems Engineering
division.

Dipl.-Ing. (TU) Gerhard Wirrer is the head of the function- and software

architecture department at the Continental Automotive GmbH at the Powertrain
Engine Systems Engineering division.

Dr. rer. nat. Ulrich Margull is the director of the 1 mal 1 Software GmbH. He counsels concerns

in software architecture and real-time system related questions.

