
Application Specific Performance Indicators for Quantitative Evaluation of the
Timing Behavior for Embedded Real-Time Systems

Frank König
Dave Boers

Carl von Ossietzky University Oldenburg
Unterm Berg 34, D-26676 Harkebrügge

mail@frank-koenig.eu / djb@qne.de

Frank Slomka
Department of Embedded Systems/Real-Time Systems
Faculty of Engineering Science and Computer Sciences

Ulm University, 89069 Ulm
frank.slomka@uni-ulm.de

Ulrich Margull
1 mal 1 Software GmbH

Maxstraße 31, D-90762 Fürth
ulrich.margull@1mal1.com

Michael Niemetz
Gerhard Wirrer

Continental Automotive GmbH
P.O. Box 100943, D-93009 Regensburg

michael.niemetz@continental-corporation.com

Abstract

In the design and development of embedded real-time
systems the aspect of timing behavior plays a central
role. Especially, the evaluation of different scheduling ap-
proaches, algorithms and configurations is one of the el-
ementary preconditions for creating not only reliable but
also efficient systems - a key for success in industrial mass
production. This is becoming even more important as multi-
core systems are more and more penetrating the world of
embedded systems together with the large (and growing)
variety of scheduling policies available for such systems.
In this work simple mathematical concepts are used to de-
fine performance indicators allowing to quantify the ben-
efit of different solutions of the scheduling challenge for a
given application. As a sample application some aspects
of analyzing the dynamic behavior of an combustion engine
management system for the automotive domain are shown.
However, the described approach is flexible in order to sup-
port the specific optimization needs arising from the timing
requirements defined by the application domain and can be
used with simulation data as well as target system measure-
ments.

1 Introduction

For real-time systems the selection of the scheduling al-
gorithm is an important decision, as it is the key to keep-
ing the required system timing as well as to building a ro-
bust and efficient system. During the last decades research

has developed a large number of powerful scheduling algo-
rithms and policies together with theoretical proofs showing
their optimality and/or performance (see for example [4]).
Lately, this area of research has gained new momentum due
to the fact that multi-core controllers are more and more en-
tering the world of embedded real-time systems. Theoret-
ical proofs are essential when developing new scheduling
algorithms, however, they are less helpful for the challenge
of selecting a scheduling algorithm in practice, as typically
some of the constraints of the proofs are violated in real
systems. In addition, an industrial embedded system has a
broad range of very different timing requirements. This is
even more the case when developing product lines, where
requirements of individual systems are merged in order to
create a generic product platform, with different, even con-
tradicting optimization targets.

The automotive business, for example, has typically (e.g.
in the power train area) a very high pressure for optimized
resource usage, due to the very high volumes of hardware
that need to be produced.

Despite this, the state of the art in terms of scheduling
in the automotive power train area is still dominated by
OSEK/VDX — an operating system standard featuring a
fixed priority scheduling which seems quite simple com-
pared to the concepts developed by researchers and used in
other areas since years. Therefore there have been already
attempts to combine the reliability of existing solutions with
the better real-time performance of newer concepts (e.g. see
[2]). Clearly, for improving the situation an evaluation of
different scheduling concepts with respect of the specific
optimization preferences of the application at hand is re-

978-1-4244-3781-8 DATE 09 / Nizza

quired.
Besides hardware-in-the-loop (HIL) and real environ-

ment tests, a promising approach to determine the benefits
for a given application that can be expected from schedul-
ing algorithms is to set up a simulation model of the system
and to evaluate different candidates.

When evaluating the timing behavior of a system, either
with simulation, hardware-in-the-loop or in the real envi-
ronment, the following questions arise:

• Comparison of two scheduler algorithms or configura-
tions for a system: Which one of the available sched-
ulers is ”better” than the other?

• Characterization of the quality of scheduler activity in
case of system changes: This is useful to evaluate a
scheduler under changing constraints, e.g. increasing
CPU load or changing operation states.

• Measure how closely a simulated system reflects the
real system: Is the simulation result comparable to the
real system behavior?

• Production of product health indicators: Calculation
of indicators suitable for monitoring the quality of an
application during development or life time.

This work shows several concepts that have been used in
an automotive power train environment to judge the bene-
fits of changes in the scheduling. The work consists of two
parts: part one gives a non-exhaustive list of disciplines —
or performance indicators — for each individual task. In
the second part it is shown how the data which have been
obtained typically on a per-task basis can be condensed to
a linear scale by using concepts well known in mathematics
in order to enable easy comparison of different system con-
figurations. Finally, as an example we show an application
of the described methods for comparing the effect of two
different priority assignments in a priority based system.

2 Relevant Performance Indicators

The first step when evaluating the different scheduling
concepts for a given real-time system is to define what are
the critical properties in the system that need to be con-
trolled and optimized. Consequently, performance indica-
tors need to be developed expressing those properties, so
that the required data can be obtained e.g. from some kind
of simulation or a real target system.

In this paper, we define a performance indicator to be
a (positive) number that expresses a relevant aspect of the
timing behavior of the system. The indicator can be related
to one task (e.g. response time) or the complete task set /
system (e.g. overall idle time). To ease the handling, we

require that for each performance indicator a larger value
expresses a worse performance than a smaller value. It is
useful to normalize the indicators so that they are compa-
rable between different tasks or even between different sys-
tems.

The indicators given in the following sections should be
considered as examples being applicable for soft and hard
real-time applications. Due to the huge variety of require-
ments to such systems, adjustment to the domain of the
given application will be often inevitable in order to reach
the desired quality of results.

2.1 Response Time

The response time r of a task T is defined as the differ-
ence between finishing time f and activation time a

r = f − a (1)

For a given deadline d, the response time r is related to
the lateness via l = r − d.

The response time r of a task T varies for each in-
stance of the task. When looking at a running system for
some time interval, one gets a response time vector r =
(r1, r2, . . . rM). This can be condensed into a single value
by taking the maximum response time rmax = max(r),
which represents the worst-case time behavior of the task.
However, in real systems the worst-case value is too pes-
simistic. In addition, the maximum value of a real system
is not a very robust indicator, since different runs typically
produce varying maximum values.

Additionally, we also use the rt97.5 value, which is the
smallest value larger than 97.5% of the result values.

Another important indicator is the average response time
rav = 1

N

∑
j rj , or the median response time rmed.

2.2 Jitter

Jitter here is defined as the variation of periodic calcu-
lations. Let ti be the points in time when a certain peri-
odic calculation is performed, then the jitter is defined as
j = (t1 − t0, t2 − t1, . . . , tM − tM−1). For many embed-
ded systems the task jitter is very important. For example,
the quality of a control loop may depend on the jitter of the
calculation.

Typically, the jitter is condensed into jmax = max(|j|).
In our evaluation we use the task start jitter (start-to-start

or s2s) and the task end jitter (end-to-end or e2e), namely
jx2x,av and jx2x,max, where x2x is either s2s or e2e.

2.3 Interruptions / Context Switches

Another performance indicator I is the number of times
a task is interrupted by another task. This is relevant since

2

each context switch generates an overhead in the operating
system, thus reducing available computing time for the ap-
plications. Again, the average number of interruptions Iav
as well as the maximum number of interruptions Imax are
of interest.

2.4 Normalization of Performance Indicators

In order to have comparable task indicators, it is useful
to normalize them respectively. All indicators based on re-
sponse time (namely rav, rmax, rt97.5) are normalized by
the respective task deadline, giving the relative response
time. A response time of 1 then means that the task finishes
exactly at the deadline (i.e. the lateness is zero).

Jitter of periodic tasks (jmax, jav) is best normalized
by the period, which yields the relative jitter. A jitter
js2s,max = 1 means that the delay between two successive
starts of the task may be as large as the period. If neces-
sary, all other performance indicators can be normalized as
required.

In the following sections, only normalized performance
indicators are used for response time and jitter.

3 Evaluation of Complete Task Sets

When evaluating a system, the resulting performance in-
dicator is valid only for one task, e.g. the maximum re-
sponse time of this task. In order to evaluate the timing
behavior of the complete system, the results of all tasks
must be taken into account. This section concentrates on
introducing methods for condensing the data of a complete
set of tasks into a scalar value and defines mechanisms for
comparing different result sets.

3.1 Definitions

Let the task set

T = (T1, T2, . . . , TN) (2)

be a vector of N tasks Ti in a system, where N is known
and typically fixed for a embedded real-time system. When
the system is activated, all tasks are executed according to
a given scenario (either in some simulation environment, a
HIL test bench or the real system environment), while the
selected indicators (e.g. those defined in the previous sec-
tion) are recorded for each task Ti individually. This deliv-
ers a result vector for each performance indicator π

xπ = (xπ1 , x
π
2 , . . . , x

π
N) (3)

with π being one of the selected performance indicators,
e.g. absolute or average response time, number of interrup-
tions, etc.

3.2 Norm Definitions

In order to define an absolute performance measure, we
use different norms on result sets, namely

• the euclidian norm defined by

||x||e =
√
x2

1 + x2
2 + . . .+ x2

N (4)

• the 1-norm (taxicab or manhattan norm) defined by

||x||1 =
1
N

∑
i

|xi| (5)

• the maximum norm

||x||∞ = max |xi| (6)

Note that (5) is normalized to the number of tasks in the
system, which allows comparison of different systems.

Additionally, the norms can be extended by weighting
each task in the norm, leading to a weighted norm, e.g.

||x||1,weighted =
1

N ·Wsum

∑
i

|γixi| (7)

where γi is the weight of the i-th task and Wsum is a
suitable normalization factor. The weight could express the
importance of a task, or the criticality of the task for the
whole system. For example, a safetly critical task might be
weighted higher than a non-safety relevant task.

3.3 Metric Definition

Based on the above norms, one can easily define corre-
sponding metrics

D(x,y) = ||x− y|| (8)

e.g. D1 and Dmax, which will be used in the following
sections to calculate the distance between two result sets.

3.4 Definition of Tendency

In order to answer the question ”which of the two sched-
ulers is better”, one could use a suitable norm and say
that result set x is better than result set y if and only if
||x|| < ||y||. However, this only gives a true / false state-
ment (”is better” or ”is worse”). In order to have a more ro-
bust indicator for ”betterness” we introduced the tendency

T ′(x,y) =

∑
xi−yi>0

|xi − yi|∑
i

|xi − yi|
(9)

3

which is scaled to [−1, 1] using

T (x,y) = 2T ′(x,y)− 1 (10)

An different tendency can be derived by just counting the
tasks for which xi is larger than yi

T̃ (x,y) =
1
N

∑
i

Θ(xi − yi) (11)

where Θ(x) denotes the Heaviside function

Θ(x) :=

{
1 x > 0
0 x ≤ 0

(12)

3.5 Feasibility Test using the Maximum Norm

A schedule is said to be feasible if all tasks always com-
plete within their deadlines (see [1]), which is equivalent to
saying that a schedule is feasible if and only if for all possi-
ble result sets x

F (x) = ||xmaxRT||∞ < 1 (13)

Using the above indicator and norm, one can not only
express the classical feasibility test (true / false), but also a
degree of feasibility.

For example, this could be useful when dealing with val-
idation of timing behavior in product development. One
might determine F for each release cycle, e.g. F = 0.9 for
one product release, and F = 0.95 for the next one. The
second value clearly indicates a heavier system load and
might reduce confidence, thus triggering additional activi-
ties in the development process.

3.6 Visualization of Result Sets

For easier comprehension and comparison several useful
visualizations are possible. In Figure 1 a polar comparison
plot is shown combining the values of the metric (length
of the ”needle”) and the tendency (angle). Here, two dif-
ferent results sets X = xπ1 ,xπ2 , . . . and Y = yπ1 ,yπ2 , . . .
that are acquired by performing two measurements, e.g. two
simulations with different schedulers, are compared with re-
spect to the performance index π by calculation of an angle
φπ using the tendency

φπ(xπ,yπ) = arcsin(T (xπ,yπ)) (14)

and a length rπ using the metric

rπ(xπ,yπ) = ||xπ − yπ|| (15)

Doing this for a set of performance indices {π1, π2, . . .}
yields a set of (φi, ri) vectors, which can be visualized in a

Figure 1. Example for polar comparison of
two result sets X and Y using π1 and π2

polar coordinate system. If the vector points to the left, i.e.
φi < 0 respective T (x,y) < 0, then systemX is better with
respect to performance index πi, otherwise Y is better. If
the vector does not point to left or right, i.e. φi ≈ 0 respec-
tive T (x,y) ≈ 0, then both systems are rather equal. The
length of the vector ri defines the difference with respect
to πi. Small length means small difference, while bigger
length means a larger difference; however, this also depends
strongly on the chosen normalization of the performance in-
dicator. One strong advantage of this representation is that
it is possible to visualize two systems with respect to many
performance indicators in one diagram. If all πi vectors
point to the same direction, a clear tendency is show. If, on
the other hand, some vectors point to the left, while other
point to the right, no tendency is displayed. In the example
in Figure 1 two performance indicators are shown.

Figure 2. Example for displaying results
(namely ||rmin||1, ||rav||1 and ||rmax||1) of ex-
periments with a continuously varied param-
eter

4

If a sequence of results with a continuously varied pa-
rameter (e.g. system load, controller clock frequency) needs
to be visualized, a different kind of diagram can be used
like shown in Figure 2. In this example the engine speed
is raised (increasing the calculation repetition rate for some
calculations) thus increasing the load of the system. There
are three sample points displayed. At each sample point the
three performance indicators minimum, average and max-
imum response time are determined. All three values are
displayed in the figure, and a band around the mean value
ranging from the minimum to the maximum is drawn. (The
linear interpolation between the sample points is just per-
formed for optical reasons.) This diagram can be extended
to different experimental setups using different colors for
each setup (however, this requires a color print-out).

4 Example: Comparing Two Priority Sets

In order to demonstrate the application of the concepts
described in the previous section a sample use case has been
selected. The underlying system is a multi task single core
automotive application with a scheduling based on priorities
that are fixed at design time. The challenge now is to com-
pare the effects of two different sets of priority assignments
on the performance of the system.

4.1 Simulation method

In the following, all result data has been obtained us-
ing a simulation approach. In order to make the simula-
tion results closely resemble the real application, runtime
measurements are performed by executing the software on
the target system. Then, using the acquired timing data
we construct a simulation model which is then executed by
the simulation tool chronSim which allows easily to change
scheduling parameters or other aspects of the system (e.g.
task priorities). Each simulation run delivers a trace that
contains all the information about the timing behavior of
the tasks in the simulation. From the trace the performance
indicators described in Section 2 can be extracted. Finally,
the resulting data can be be treated with the concepts of sec-
tion 3.1 in order to get the desired comparison on system
level.

For more details on how the model is set up and how
the simulation can be performed, please see [5] and the web
page of the tool vendor [3].

4.2 Results of simulation

As a first example application of the methodology we
use two simulation runs of the same task set consisting of
20 tasks. The tasks have very different execution times and
recurrence definitions. The two simulation runs differ in the

Figure 3. Polar comparison of the response
time between deadline monotonic (left) vs. ar-
tificially bad adjusted priority pattern (right)

Figure 4. Number of context switches
||Iav(rpm)||1 for two different schedulers

used set of priorities assigned to the tasks. In the first run
a priority pattern based on deadline monotonic scheduling
is used and in the second run the priorities are distributed
according to a three level priority scheme based on a func-
tional grouping mainly neglecting the deadline or arrival
rate of the calculations. The expectation with this very basic
setup is, of course, that the performance indicators clearly
show that the deadline monotonic approach is better suited
to keep the deadlines (which is, after all, a major goal in a
real-time system).

Figure 3 shows the result for two performance indica-
tors, the median and the t97.5 value of the relative response
time. In the shown polar plot both ”needles” are pointing
to the left side, indicating as expected that the deadline
monotonic priority assignment shows a better response
time behavior. Please note that especially the t97.5 value,
being more sensitive to the maximum values than the
median, shows a strong difference.

The second example shows the number of interruptions
for two different scheduler concepts using the same task set
as described above. In order to check the system under dif-

5

ferent operation conditions the engine rotation speed was
varied and sample points for 11 values have been taken. In
Figure 4 the results are shown, indicating clearly that us-
age of scheduler 2 results in a higher number of context
switches regardless of the operating state of the system.

Finally, Figure 5 shows the results for another two sched-
uler setups regarding the response time behavior. In this
experiment 23 sample points have been taken at different
operating conditions. Obviously, the scheduler 1 shows an
remarkable performance improvement regarding the aver-
age and maximum response time.

Figure 5. Response time bands (||rmin||1,
||rav||1 and ||rmax||1) for two different sched-
ulers

5. Summary

State of the art scheduling analysis approaches deliver a
true / false statement on the schedulability of a given task
set. Despite this, designers of systems in reality need more
fine grained information about their system. For this often
timing measurements (e.g. using instrumented software or
special measurement hardware) and simulation techniques
are used. In this work it was shown how the data obtained
with such techniques can be condensed into key perfor-
mance indicators for the investigated system allowing the
comparison of different concepts in a very detailed way.
Given the fact that the indicators can be tuned to the spe-
cific needs of the investigated application this is an valuable
tool to design or improve the application architecture by se-
lecting the most efficient scheduling algorithm and setting
up the optimal parameters for it.

The presented approach offers a powerful and expand-

able framework for visualization and evaluation of the sys-
tems timing behavior. The main challenge hereby lies in
the selection of relevant performance indicators and norms
/ metrics, which may differ for different systems (or classes
of systems). However, once the key performance indicators
are chosen, evaluation and control of nearly all aspects of
the systems timing behavior is possible, in the system de-
sign phase as well as in validation of the system.

6. Acknowledgements

We thank Denis Claraz and Pierre Fourty (Continental
Automotive SAS, Toulouse, France) for numerous discus-
sions having inspired the work on the results presented in
this paper.

References

[1] G. C. Buttazzo. Hard Real-Time Computing Systems. Kluwer
Academic Publishers, Boston/Dordrecht/London, 2002.

[2] C. Diederichs, U. Margull, F. Slomka, and G. Wirrer. An
application-based edf scheduler for osek/vdx. In Date 2008,
2008.

[3] INCHRON GmbH. chronSim. http://www.inchron.de/.
[4] C. L. Liu and J. W. Layland. Scheduling algorithms for multi-

programming in a hard real-time environment. Journal of the
Association of Computing Machinery, 20(1), January 1973.

[5] U. Margull, P. Fourty, and G. Wirrer. Simulation methods
for evaluation of resource critical real-time systems. To be
published.

[6] R. Münzenberger, M. Dörfel, U. Margull, and G. Wirrer.
Entwurf echtzeitfähiger Steuergerätesoftware in FlexRay-
Netzwerken. In KFZ-Entwicklerform Design&Elektronik,
2007.

6

