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Abstract

Partly Proportionate fair (Partly-Pfair) scheduling, which allows task migration at runtime
and assigns each task processing time with regard to its weight, makes it possible to build
highly efficient embedded multi-core systems. Due to its non-work-conserving behavior,
which might leave the CPU idle even when tasks are ready to execute, tasks finish only
shortly before their deadlines are reached. Benefits are lower task jitter, but additional work-
load, e.g. through interrupts, can lead to deadline violations.
In this paper we present a work-conserving extension of Partly-Pfair scheduling, called P-
ERfair scheduling and the algorithm P-ERfair-PD2 which applies Pfair modifications used
for Partly-Pfair on the concept of ERfairness and PD2 policies. With a simulation based
schedulability examination we show for multiple time base (MTB) task sets that P-ERfair-
PD2 has the same performance as Partly-Pfair-PD2. Additionally, we show that P-ERfair-
PD2 has a much higher robustness against perturbations, and therefore it is well suited for
embedded domains, especially for the Automotive domain.

1. Introduction

Scheduling a task set1 τ = {Ti} (i = 1, ..., n; n ∈ N), with independent and hard real-time
constrained tasks Ti, on a multiprocessor2 M = {Px} (x = 1, ...,m; m ∈ N) with m identical
processing resources Px, has been widely studied in the last two decades. Scheduling algo-
rithms for these systems can be classified in two groups.
One group consists of algorithms using the partitioning scheduling approach, which allo-
cates tasks before runtime. The benefit of this approach is that the scheduling problem can
be treated like in uniprocessor systems, using well studied algorithms like Earliest Deadline
First (EDF) or Rate Monotonic (RM) [1] together with partitioning heuristics, e.g. bin-
packing variants [2], applied before runtime. One major drawback of the partitioning ap-
proach is a low maximal system utilization [3].
The other group consists of algorithms using the dynamic scheduling approach, which allo-
cates tasks during runtime. Partly Proportionate fair (Partly-Pfair) Scheduling [4], a modi-
fication of Proportionate fair (Pfair) Scheduling [5], is a highly efficient mechanism of dy-

1A task set is the description of timing relevant embedded software properties and has to fulfill the restrictions
given by the underlying task system.

2coll. Multi-Core



namic scheduling. In [4] we presented the algorithm Partly-Pfair-PD2, which is based on
PD2 policies [6]. The algorithm Pfair-PD2 is optimal3 for a system with m processors.

In this paper we show how work-conserving scheduling can be applied to multiple time
base (MTB) task systems [4] which allow to model a wide variety of automotive control
systems. The resulting model is called partly early release fairness (P-ERfair) and is deduced
from [8]. Using a simulation based analysis technique, we examine the performance of P-
ERfair .

The remainder of this paper is organized as follows. In the next chapter we give a brief
review of the properties of ERfair scheduling and PD2 policies as introduced by [8] and [6].
Then we describe the multiple time base (MTB) task system and the restrictions required for
the application of P-ERfairness to MTB task systems before we introduce in Chapter 5 the
new scheduling algorithm P-ERfair-PD2 which is based on P-ERfair and PD2. After a brief
introduction to the simulation-based scheduling analysis we give a performance examination
of P-ERfair-PD2. Finally we give a conclusion of our contribution to dynamic multiprocessor
scheduling.

2. Early Release Fair Scheduling

Early Release Fair scheduling was introduced by Anderson et al. [8]. It is an extension of
proportionate fair (Pfair) scheduling, which was introduced by Baruah et al. [5] for periodic
task systems, as defined by Liu and Layland [1]. Pfair implies that for each task Ti processing
time is assigned according to its weight wt(Ti),

wt(Ti) =
Ti.e

Ti.p
(1)

with the worst case task execution time Ti.e and the task activation period Ti.p. Anderson
et al. [6] proved that the Pfair scheduling algorithm PD2 is optimal for scheduling a task set
τ in a multiprocessor system with m processors iff formula 2 holds.

n

∑
i=1

wt(Ti) ≤ m (2)

Pfair is deduced from the fluid scheduling model. The fluid schedule fluid(T, t1, t2) repre-
sents the processing time, which has to be assigned to a task Ti during a time interval between
t1 and t2 with regard to its weight wt(Ti). Figure 1-a shows an example with two tasks T1

and T2. The fluid schedule graph of both tasks is shown as a thick line.

fluid(Ti, t1, t2) = wt(Ti)(t2 − t1) (t1 < t2)

Theory tells that if each task is executed with an individual processing speed according
to the fluid schedule, all task deadlines are held. This theorem is valid as long as system
utilization does not exceed m. Physically, fluid scheduling is not applicable with current
processor architectures and approximations are needed.

3Optimality, defined by Buttazzo [7]: [...] an algorithm is said to be optimal if[f] it always finds a feasible
schedule whenever there exists one. [...] A schedule is said to be feasible, if[f] all tasks can be completed
according to a set of specified constraints.



Figure 1: a, ERfair Scheduling with ERfair-PD2; b, P-ERfair Scheduling with P-ERfair-
PD2: Windows w(T ki ) of a heavy task T1 with weight wt(T1) and quantized weight
wt’(T1) = wt(T1) = (6/10) and light task T2 with weight wt(T2) = wt’(T2) =

(3/7). Subtasks T 1
1 , ..., T

6
1 and T 1

2 , ..., T
3
2 (black) have to be executed until end of

their windows to guarantee ERfairness. (Example shows subtask execution on a
uniprocessor.)

The difference between the received processing time and the fluid schedule for a Task Ti
at time t is defined as Lag:

Lag(Ti, t) = fluid(Ti, 0, t) − received(Ti, 0, t)

Pfair scheduling is an adjustment of fluid scheduling theory to physical processors and a
discrete time model. The resolution of the discrete time is called quantum. Let Q denote the
duration of a quantum, then Pfair implies that the minimal Lag is −Q and the maximal Lag
is +Q.

−Q ≤ Lag(Ti, t) ≤ +Q ∀ Ti ∈ τ

The lower restriction results in non-work-conserving behavior, which causes the CPU to
be idle even when there are tasks ready to execute [9]. ERfair , being a work-conserving
variant of Pfair , necessarily disregards the lower bound.

Lag(Ti, t) ≤ +Q ∀ Ti ∈ τ (3)

This is the only modification of ERfair according to Pfair .
To adapt periodic task systems to ERfair scheduling, a task Ti of a periodic task set τ is

split into a number of subtasks4 T ki (k = 1, ..., q; q ∈ N). Each T ki has the execution time Q.
Therefore the number of subtasks q can be calculated from the task execution time Ti.e by

q =
Ti.e

Q
. (4)

To fulfill (3), a subtask T ki has to be scheduled until the end of a time window w(T ki ). This
starts with the pseudo5-release r(T ki ) and ends with the pseudo-deadline d(T ki ) (⌊χ⌋ is the

4We denote T k
i the kth subtask of task Ti.

5The appendix pseudo is used to differ between task and subtask properties.



highest integer, smaller or equal to χ; ⌈χ⌉ is the smallest integer, higher or equal to χ).

r(T ki ) = ⌊
k − 1

wt(Ti)
⌋ (5)

d(T ki ) = ⌈
k

wt(Ti)
⌉ (6)

As with ERfair , only the pseudo-deadline is used for subtask execution limitations. A sub-
task can be executed before the pseudo-activation, in contrast to Pfair . Due to the sequential
dependency between subtasks of the same task, a subtask can not be executed before its ante-
cessor has finished. In figure 1-a, the thin lines above the fluid schedule represent the earliest
possible execution of a subtask.

The subtask window w(T ki ) is required for the calculation of further scheduling poli-
cies.We call the smallest time division where a complete subtask can be executed slot S.
Depending on the weight of a task Ti a window w(T ki ) = {S1, S2, ..., S end} has a number of
slots. (We denote ∣w(T k)∣ = ∣{S1, S2, ..., S end}∣ as the quantity of slots of a window.)

∣w(T k)∣ = ⌈
k

wt(T)
⌉ − ⌊

k − 1

wt(T)
⌋ (7)

Based on this concept, algorithms with different scheduling policies, having been proposed
for Pfair , could also be applied to ERfair . For systems with more than two processors
scheduling only based on Earliest-Pseudo-Deadline-First is not sufficient. Therefore tie-
breaking rules have to be applied for optimality [6]. In this paper we focus on the algorithm
PD2 [6] which is known to be the most efficient beside PF [5] and PD [10]. It uses only two
additional tie-breaking rules and thus can be calculated efficiently during runtime.

Algorithm ERfair-PD2

In the following part we provide a short introduction to the algorithm ERfair-PD2. We denote
policy as a criterion of prioritization. The calculation of the PD2 policies can be found in the
attachment.

PD2 schedules with Earliest-Pseudo-Deadline-First (pseudo-deadline d(T ki ) of the kth

subtask of the ith task) and two additional tie-breaking rules. A tie-breaking rule is used,
whenever a policy is not sufficient6 for prioritization.

The first tie-breaking rule is called overlapping-bit. The overlapping-bit is calculated by
b(T ki ) (formula 23). Informally, when the current subtask window overlaps with the window
of the sequent subtasks, the overlapping bit is 1. PD2 prefers subtasks with overlapping bit
equal to 1. For example, subtask T 2

1 in Figure 1-a has the overlapping bit set at t = 4, but not
T 3

1 at t = 5.
The other tie-breaking rule is called group-deadline. The group-deadline is calculated

by D(T ki ) (formula 24 and 25). The calculation of D(T ki ) is more complicated than the
calculation of b(T ki ). Informally the group-deadline concerns the following scenario: A
subtask of a task is not executed in the current slot, but will be executed in the next slot.
Then the group-deadline is the time, at which one of the following subtasks has more than

6Not sufficient means that choosing the wrong task for execution, whenever both tasks have the same policy
value, can produce ERfair non-conforming behavior.



one slot in its window left for scheduling, for the first time. PD2 prefers subtasks with a
higher group-deadline.

ERfair-PD2 is a global algorithm and performs each discrete time tick a schedule decision.
Running tasks can be preempted by higher priority tasks.

As an example we examine three scheduling decisions. The example in figure 1-a illus-
trates the execution on a uniprocessor7. (The ≻ and ≺ operators are used to describe the
scheduling prioritization: subtask T aX has to be preferred before subtask T bY when T aX ≻ T bY ;
T bY has to be preferred before subtask T aX when T aX ≺ T bY ; otherwise the next policy has to be
evaluated. If there is no further policy the selection is arbitrary.)
At timestamp 0 ERfair-PD2 prefers the subtask of task T1 before the subtask of T2, because
d(T 1

1 ) = 2 ≻ d(T 1
2 ) = 3.

At timestamp 3 ERfair-PD2 prefers the subtask of task T2 before the subtask of T1, because
d(T 3

1 ) = d(T
2
2 ) = 5 and b(T 3

1 ) = 0 ≺ b(T 2
2 ) = 1.

At timestamp 10, it is arbitrary if the subtask of task T2 is preferred before the subtask of T1

or otherwise, because d(T 1
1 ) = d(T

2
2 ) = 12, b(T 1

1 ) = b(T
2
2 ) = 1, and D(T 1

1 ) = D(T 2
2 ) = 0 (for

details, see section A).

3. Multiple Time Base Task System

The Multiple Time Base (MTB) task system originates from the field of automotive pow-
ertrain applications, but concerns the general problem of many embedded systems, to have
different tasks activation sources, e.g. Flexray or CAN. In a typical automotive powertrain
system, two main sources of task activation exist. The first source is a periodic trigger, which
activates tasks with different constant recurrences. The other source is the crank shaft of the
engine, which activates tasks depending on the engine position. Analyzing such systems with
a periodic task system model [1] is not possible, because the drifting behavior of the crank
shaft activated tasks is not represented. Analyzing such systems with a sporadic task system
model [11] will produce too pessimistic results, because the sporadic theorem assumes all
tasks to be activated at the same time, which is not the case.

In MTB task systems, tasks refer to a time base of the system. All tasks concerning the
same time base have a defined phasing in their activation compared to all other tasks referring
to this time base.

A task set τ = {Ti} of tasks Ti, belonging to the MTB task system is defined in the follow-
ing way:

Definition 3.1 A task set τ consists of a number of tasks Ti.

τ = {Ti} i = 1, ..., n; n ∈ N

Definition 3.2 A task Ti is defined by a tuple

Ti = (p, o, e, d, bv).

The elements of the tuple are the task properties: minimal task recurrence p, first task in-
stance offset o, worst-case execution time e, deadline d, and a reference to a time base bv.

7ERfair-PD2 scheduling on multiprocessors is analogous, with the difference that instead of one task, m tasks
are selected for execution.



Definition 3.3 A time base bv is defined by the tuple

bv = (f, ϕ) (v = 1, ..., w; w ∈ N).

The time base properties are the frequency multiplier f and an angular phase shift ϕ. The
variation of both properties defines the relation between the time base bv and a unique global
time.

Definition 3.4 For the time base properties following restrictions exist.

f ∈ R≥1

ϕ ∈ R≥0

As task recurrence p and task offset o of task Ti are related to the time base bv, the task
recurrence p′ and task offset o′ transformed to unique global time can be calculated by:

p′i = pi ⋅ b
v.f + bv.ϕ (8)

o′i = oi ⋅ b
v.f + bv.ϕ (9)

By definition, the frequency multiplier f cannot be smaller then 1, therefore pi is the minimal
recurrence and can be used for analysis purposes. Section 6 shows how this transformation
is used to the detect worst-case response time.

A further extension of MTB task systems is a separation of the task Ti into task sections
T ki .

Definition 3.5 A task Ti is split into a number of task sections T ki (k = 1, ..., q; q ∈ N).
According to the task execution time Ti.e and the task section execution time T ki .e following
relation exists.

Ti.e =
q

∑
k=1

T ki .e

Definition 3.6 All task sections are sequentially dependent. Therefore, task section T bi can
not be executed before task section T ai has finished its execution, if a < b and a, b ∈ {1, ..., q}.

4. Restrictions on MTB Task Systems for P-ERfairness

In this part we examine the required restrictions on MTB task systems, for the application of
P-ERfair scheduling, which will be introduced in the next section.

• Sporadic task activation is allowed, but the minimal recurrence has to be a multi-
ple of the time quantum
Tasks are allowed to be activated in continuous time, as long as the minimal distance
between two subsequent activations is at least the minimal recurrence. The minimal
recurrence has to be given in discrete time resolution Q.

Ti.p = zQ , with z ∈ N (10)

As task activation can be sporadic, asynchronous task activation in continuous time is
allowed.



• Maximum task section execution time is restricted to discrete time resolution
The maximal task section execution time is limited to the discrete time resolution Q.
(Ti represents the ith task of a task set τ and T ki represents the kth task section of task
Ti.) This results in

⌈
T ki .e

Q
⌉ = 1 ∀ T ki ∈ Ti (11)

• Explicit deadlines are allowed, but have to be a multiple of the time quantum
The deadline can be given explicitly, but has to be given in discrete time.

Ti.d = zQ , with z ∈ N (12)

• Restriction of task section quantity
The number of task sections multiplied with the discrete time resolution Q is not al-
lowed to be higher than the minimum of recurrence and deadline. Therefore, the task
section quantity is restricted in the following way.

∣{Ti
1, ..., Ti

q}∣ Q ≤ min{Ti.p, Ti.d} (13)

• Restriction of maximal system utilization
In a system with m processing resources, where each resource has a capacity of 1, the
maximal quantized system utilization U ′

sys, calculated with the quantized task weight
wt’(Ti), is restricted by

wt’(Ti) =
∣{T 1

i , ..., T
k
i }∣ Q

min{Ti.p, Ti.d}
(14)

and
U ′
sys =

n

∑
i=1

wt’(Ti) ≤ m (15)

using the minimal recurrence Ti.p and the deadline Ti.d from all tasks Ti.

5. Partly Early Release Fair Scheduling

In the following section we introduce the concept of Partly Early Release Fair (P-ERfair)
scheduling.

P-ERfair uses a similar task architecture as ERfair . A task is split in task sections (at
ERfair called subtasks) and a task section has to be scheduled until the end of a window with
a pseudo-deadline8. P-ERfair is based on MTB task systems with restrictions expressed in
formulas 10 - 13, 15.

P-ERfair calculates the task weight wt’(Ti) by 14, the pseudo-release time by

r′(T ki ) = ⌊
k − 1

wt’(Ti)
⌋ (16)

and the pseudo-deadline by

d′(T ki ) = ⌈
k

wt’(Ti)
⌉ − 1 . (17)

8Therefore all algorithms implement ERfair , e.g. PD2, theoretically could implement P-ERfair .



For the calculation of additional tie-breaking rules (e.g. at PD2: overlapping-bit and group-
deadline), the following replacement rules have to be applied (χ → χ′ denotes symbol χ is
replaced by χ′):

wt(Ti)→ wt’(Ti) (18)

r(T ki )→ r′(T ki ) (19)

d(T ki )→ d′(T ki ) (20)

Algorithm P-ERfair-PD2

In this section we present the P-ERfair scheduling algorithm P-ERfair-PD2. P-ERfair-PD2

is based on PD2 policies.
P-ERfair-PD2 schedules task sets, like ERfair-PD2, with Earliest-Pseudo-Deadline-First

and with two additional tie-breaking rules: overlapping-bit and group-deadline. The calcula-
tion of these policies is analogous to Pfair-PD2, with the difference in modifications through
formula 18, 19, and 20.

P-ERfair-PD2 is a cooperative algorithm, which means a task section cannot preempt an-
other running task section. Another task section can just be allocated to the processing re-
source at executing task sections boundaries. The P-ERfair-PD2 scheduling routine is called,
whenever a task is activated or a task section has finished.

As an example, we discuss a P-ERfair-PD2 schedule, which has slightly modified task
properties compared to the ERfair-PD2 example in section 2. In Figure 1-b, both tasks T1

and T2 have task sections with an execution time ≤ Q. Task T1 is activated asynchronous
(with a offset from zero). The execution again is on an uniprocessor9. At time stamp 0 only
task T2 is activated and therefore task section T 1

2 is executed. Between time stamp 10 and
11, after task section T 3

2 has finished, T 2 has finished execution and task T1 is not activated.
As there is no task ready for execution, the processor goes idle and the scheduler waits until
next call occurs, which happens when task T1 is activated.

6. Simulation-based Schedulability Estimation

This section explains why dynamic multiprocessor schedulability analysis extremely differs
from uniprocessor schedulability analysis and provides an overview of the simulation based
schedulability estimation methodology of MTB task sets, scheduled by P-ERfair-PD2.

Classical theory of uniprocessors schedulability analysis, formed by Liu and Layland [1],
defines following theorem according schedulability test.

Theorem 6.1 (see Liu and Layland [1]) In a uniprocessor system, if a task set is schedula-
ble under the assumption of the minimal recurrence, a simultaneous activation of all tasks10,
and a worst-case execution time for all tasks, then the task set is also schedulable at all other
circumstances (namely higher recurrence and lower execution time).

For multiprocessors, it is common knowledge that theorem 7.1 fails, when a dynamic
scheduling approach is used [12]. Reasons for that are Richard’s anomalies like the Graham
theorem.

9Equal to ERfair-PD2, P-ERfair-PD2 scheduling on multiprocessors is analogous to scheduling uniprocessors,
with the difference that instead of one task, m tasks are selected for execution.

10For sporadic task systems only.



Theorem 6.2 (Graham Theorem, see [13]) For the stated problem, changing priority list,
increasing the number of processors, reducing execution times, or weakening the precedence
constraints can increase the schedule length.

Richard’s anomaly [12] causes a breakdown of formal analysis (as stated in theorem 6.1).
Consequently, new methods for schedulability estimation are required. Exact methods are
extremely effort intensive e.g. the state enumeration with a brute-force approach [14]. Less
work intensive approaches e.g methods using discrete event-based simulation for schedula-
bility examination [15, 16] are only worst-case convergence mechanisms. Certainly, at the
moment these methods are the only available techniques for schedulability calculation of
continuous time models.

Simulation Approach

The discrete event-based simulation is based on a model of the hardware and software char-
acteristics.
Comparable to the System-C based approach of Samii et al. [16], we vary simulation pa-
rameters to estimate the worst case response time. Because the execution time is constant at
MTB task systems, only the activation relation of the tasks differs. At MTB task systems the
task activation frequency differs because of the time base properties, described in section 3.
We vary them within their valid range so that the simulation covers cases approximated to
worst case scenarios and thus yields the largest relative response times for all tasks.

During the simulated time, a task Ti generates a number of jobs (i.e. instances) Ti,j and its
state changes occur through task activation, suspension, resumption, and termination. As a
result of the simulation, a trace is generated containing a number of these state transitions of
the system. König et al. [17] presented, how the real-time metrics like (worst-case) lateness
L(Ti) as introduced by Buttazzo in [7] can be used to analyze the trace of a simulation.

The lateness l(Ti,j) of the jth job of task Ti is calculated by

l(Ti,j) = di,j − fi,j

l(Ti,j) is equivalent to the time left until reaching the deadline. The lateness is negative
when the finishing time fi,j is smaller than the absolute deadline di,j , i.e. if the calculation
is finished in time. To determine the task-deadline compliance for a complete task set we
identify the job which yields the largest lateness for each task. Additionally we normalize
that lateness l(Ti,j) with the relative deadline Di of the task Ti. We denote the maximum of
that value of all tasks in a task set τ as maximal normed lateness mNL (τ).

mNL(τ) = max
Ti∈τ

⎛
⎜
⎝

max
Ti,j∈Ti

(l(Ti,j))

Di

⎞
⎟
⎠

(21)

To analyze P-ERfair-PD2, we pseudo-randomly generate task sets τz and examine their
maximal normed lateness mNL(τz). As the stochastic parameters for the pseudo-random
generation are based on a stochastic task set description, we call this Monte-Carlo approach
[15, 18].



Technical Experiment Setup

The Monte-Carlo approach combined with the simulative study of large numbers of task
sets is quite calculation effort intensive. Therefore, we developed a C++ based simulation
environment using a cluster computing approach. The Condor Cluster Computing network
[19] is used to execute multiple instances of our simulation. Since each task set can be
simulated independently, huge speedups around a factor of 100≈150 are possible when using
the PC pools of the Regensburg University of Applied Sciences.

7. Performance Examination of P-ERfair-PD2

In order to examine the performance of P-ERfair-PD2 we pseudo-randomly generated 500000
task sets τz (z = 1, ..., 500000). All τz were simulated using the approach described in the pre-
vious section. Each task set was analysed on a system simulating a quad-core multiprocessor
(m = 4) with a P-ERfair-PD2 scheduling algorithm.

The pseudo-random task set generation process is based on a stochastic task set descrip-
tion, similar to the manner it was introduced in [15].
The stochastic task set is deduced from automotive powertrain systems. We create the task
sets {τz} in the following way.

First, the quantity of tasks nz of task set τz is drawn from a discrete uniform distribution
(nmin = 20, nmax = 30). Afterwards, for each task Ti ∈ τ the recurrence11 is drawn from an
equally distributed list of recurrences {2.5, 5.0, 7.5, 10.0, 20.0, 50.0} and the utilization wt(Ti)
is drawn from a Weibull distribution (wmin = 0.05, w = 0.15, wmax = 0.51, prest@wmin = 10%).
For all tasks, the deadline is equal to the recurrence. The quantum Q is set to 0.25. For
the task section execution time, we randomly generate execution times (also from a Weibull
distribution (wmin = 0.125, w = 0.24, wmax = 0.25, prest@wmin = 10%) and assign the generated
task sections T k (with task section execution time T k.e) to a task Ti as long as the condition

q

∑
k=1

T ki .e ≤ Ti.p ⋅ wt(Ti)

is fulfilled.
As T ki .e is drawn from a distribution with maximum equal to Q and MTB task set restriction
15 requires that quantized system utilization U

′

sys ≤ m, the possibility to achieve U
′

sys = Usys
is very low. Therefore we generated 200000 task sets with T ki .e = Q∀i, k to achieve more
task sets with U

′

sys = Usys.
The task offset o is drawn from a uniform distribution (umin = 0.0;umax = 0.05). Finally, each
task is assigned to a time base b.v according to a uniform distribution {1, 2, 3, 4}.

Figure 2 shows the result of all randomly generated and simulated task sets.The left ex-
periment represents Partly-Pfair-PD2 and the right experiment represents P-ERfair-PD2. 12

One point represents the maximum normed lateness mNL(τz) (formula 21) of a task set τz.
The line shows the quantity of the generated task sets as a function of system utilization
Usys(τz) calculated by formula 22.

Usys(τz) =
nz

∑
i=1

Ti.e

Ti.p
. (22)

11All further times are in unit ms.
12Total single CPU time for generation ∼one year.



Figure 2: a, algorithm Partly-Pfair-PD2; b, algorithm P-ERfair-PD2: 500000 randomly gen-
erated and simulated task sets. The simulated hardware is a quadcore-processor
(m = 4). Each point of mNL equates the worst relative task lateness of one task
set. A negative mNL implies all task-deadlines of a task set are meet. The line
represents the quantity of generated task sets as a function of system utilization.

At Partly-Pfair-PD2 one deadline violation of 0.005% occurs [4]. At P-ERfair-PD2 no dead-
line violation occurs for all generated and simulated task sets.

8. Reliability Considerations

In this section we analyze the reliability of Partly-Pfair-PD2 (non-work-conserving behavior)
and P-ERfair-PD2 (work-conserving behavior) by violating MTB task system properties.
Each task section is challenged with a random variation of the task section execution time via
a Weibull distribution in the range of T ki,j .e = [0.9 ⋅Q, ..., 2 ⋅Q] ∀i, j, k , with T ki,j .e ∈ R, and
T ki,j .e = Q.13 Again, Q is set to 250 µs. In real systems, such task execution time variation
could occur due to varying runtime of algorithms, preemptions caused by interrupt service
routines, different control flows depending on the input, etc. In any case, such variations lead
to a violation of the MTB task system restriction 11.

The simulation consists of 100000 generated task sets according to the definition in sec-
tion 7, with adaptations to the task section execution time as described above. Figure 3
shows the schedulability examination results for both algorithms with a quad-core (m = 4)
processor. Each box plot represents statistical estimators of mNL for a group of task sets,
clustered by system utilization in 25 equal sized groups. At the box plot, the symbol repre-
sents the median, the box around the symbol the bootstrapped 99% confidence intervall of
the median, and the whispers represent the upper and respectively the lower bootstrapped
99% confidence intervall of the inter-quantile distance (99%) boundaries.

Due to it its non-work-conserving behavior, the Partly-Pfair-PD2 algorithm leads to a mNL
typically close to zero. While an unperturbed Partly-Pfair-PD2 system would hold the dead-
line up to high utilizations, the perturbed system shows the first deadline violation at a quite
13We denote T k

i,j the task section execution time of the kth task section of the jth job (i.e. instance) of task Ti.



Figure 3: Stress test of Partly-Pfair-PD2 and P-ERfair-PD2 through random variation of the
task section execution time via a Weibull distribution. The task section execution
time can be twice as long as allowed.

low system utilization of 2.2 (which corresponds to 55%).
On the other hand, P-ERfair-PD2 is work-conserving, which means its tasks typically finish
much earlier than their deadline, leading to a smaller mNL way below the mNL=0 limit (at
least for smaller utilizations). Consequently, the perturbed system is able to keep all dead-
lines up to a rather high system utilization of 3.7 (which corresponds to 92.5%).
This shows that the P-ERfair-PD2 algorithm is able to handle variations of the task section
execution time quite well, while Partly-Pfair-PD2 fails completely above 57.5% (i.e. upper
box plot wisper is above mNL =0 limit).

9. Conclusion

Embedded systems, namely in the Automotive domain, demand for highly efficient hardware
usage, also when the system uses multi-core architectures. Additionally, since tasks typically
execute on external triggers and have variable task execution time, most algorithms that have
been proven optimal under simplified conditions are not applicable in productive systems.

Driven by these circumstances, we introduced in this work the algorithm P-ERfair-PD2,
an work-conserving modification of the Partly-Pfair-PD2 [4] algorithm.

In a simulation based Monte Carlo analysis we showed that for the task sets, aligned to ex-
isting Automotive powertrain applications, the performance of this new P-ERfairness based
scheduling algorithm is very high (in examinations all deadlines are kept). By introducing
perturbations into the system, i.e. adding violations to the defined rules for MTB task system,
we showed that the algorithm is able to schedule the systems without deadline misses up to
a very high utilization of 92.5%, whereas Partly-Pfair-PD2 completely fails above 57.5%.
However, a quantitative analysis of the robustness of P-ERfair remains the subject of future



work.
These results show that P-ERfair is an highly interesting scheduling algorithm for many

embedded domains changing to multi-core architectures, especially for Automotive power-
train applications.
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A. Appendix

A.1. Description of PD2 Policies

In the following part we describe the calculation of PD2 policies.
The ≻ and ≺ operators are used to describe the scheduling prioritization: subtask T aX has to
be preferred before subtask T bY when T aX ≻ T bY ; T bY has to be preferred before subtask T aX
when T aX ≺ T bY ; otherwise the next policy has to be evaluated. If there is no further policy the
selection is arbitrary.

Policy 1 (Pseudo-Deadline):
T aX ≻ T bY if d(T aX) < d(T bY ); T aX ≺ T bY if d(T aX) > d(T bY ).
d(T ki ) equates the pseudo-deadline, calculated by formula 6.
Figure 1-a,b shows the windows for the subtasks of two task T1 and T2 with a weight
of wt(T1) = 6/10 and wt(T2) = 3/7. The pseudo-deadlines of the subtasks T 1

1 , ..., T
6
1 are

d(T 1
1 ) = 2, d(T 2

1 ) = 4, d(T 3
1 ) = 5, d(T 4

1 ) = 7, d(T 5
1 ) = 9, and d(T 6

1 ) = 10.

Policy 2 (Overlapping-Bit):



T aX ≻ T bY if b(T aX) > b(T bY ); T aX ≺ T bY if b(T aX) < b(T bY ).
The overlapping bit function b(T ki ) denotes the overlapping of two successive subtask win-
dows T ki and T k+1

i of a Task Ti.

b(T ki ) = {
1 , if d(T ki ) > r(T

k+1
i )

0 , if d(T ki ) ≤ r(T
k+1
i )

(23)

PD2 prefers subtasks with overlapping windows, because delaying such a subtask means that
the successive subtask has a smaller window to be scheduled. In figure 1-a,b the overlapping-
bits of the subtasks {T 1

1 , ..., T
6
1 } are b(T 1

1 ) = 1, b(T 2
1 ) = 1, b(T 3

1 ) = 0, b(T 4
1 ) = 1, b(T 5

1 ) = 1,

and b(T 6
1 ) = 0.

Policy 3 (Group-Deadline):
T aX ≻ T bY if D(T aX) > D(T bY ); T aX ≺ T bY if D(T aX) < D(T bY ).

The group-deadline function D(T ki ) concerns the effect of schedule decision of a subtask for
its subsequent subtasks. Let T ci , ..., T

d
i be a sequence of subtasks of a heavy task Ti (heavy

means wt(Ti) ≥ 0.5) in the way that c < k ≤ d with a window of subtask T ki either of length
∣w(T k+1

i )∣ = 3 (e.g. figure 1-a,b, subtask T k1 , k = 1) or ∣w(T k+1
i )∣ = 2 ∧ b(T ki ) = 0 (e.g. figure 1,

subtask T k1 , k = 3). Then scheduling subtask T li c < l ≤ d in the last slot of its window w(T li )

results in scheduling all subsequent subtasks in there last slot, excepted subtask T k+1
i because

there are 2 slots left. Therefore the sequence T ci , ..., T
d
i can be seen as one subtask-unit where

scheduling one subtask in the last slot results in scheduling each subsequent subtask in its
last slot. Otherwise pseudo-deadlines are missed. The group-deadline is the last time slot of
this subtask-unit at time d(T ki ) + 1. Formally, the group-deadline D(T ki ) can be calculated
for heavy tasks by (24) [20].

D(T ki ) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢

⌈⌈ k
wt(Ti)⌉ ⋅ (1 −wt(Ti))⌉

1 −wt(Ti)

⎤
⎥
⎥
⎥
⎥
⎥
⎥

if wt(Ti) ≥ 0.5 (24)

Furthermore Srinivasan [20] proved for light tasks (wt(Ti) < 0.5) the group-deadline is 0

(formula 25) ∀ T ki ∈ Ti.
D(T ki ) = 0 if wt(Ti) < 0.5 (25)

In figure 1 the group-deadlines of T ′1s subtasks are D(T 1
i ) = 3, D(T 2

i ) = 5, D(T 3
i ) =

5, D(T 4
i ) = 8, D(T 5

i ) = 10, and D(T 6
i ) = 10. At task T2 each window has at least 2 slots left,

when the precedent subtask is scheduled in the last slot.


