Partly Proportionate Fair Multiprocessor Scheduling
of Heterogeneous Task Systems

Michael Deubzer', Ulrich Margull?, Jirgen Mottok!, Michael Niemetz3, Gerhard Wirrer3
'University of Applied Sciences Regensburg, LaS? - Laboratory for Safe and Secure Systems Faculty
Electrical Engineering, P.O. Box 12 03 27, D-93025
Regensburg,{michael.deubzer,juergen.mottok } @hs-regensburg.de
21 mal 1 Software GmbH, MaxstraBe 31, D-90762 Fiirth, ulrich.margull@1mali.com
3Continental Automotive GmbH, P.O. Box 100943, D-93009 Regensburg
{michael.niemetz,gerhard.wirrer }@continental-corporation.com

Abstract: Proportionate-fair (Pfair) scheduling, which allows
task migration at runtime and assigns each task processing
time with regard to its weight is one of the most efficient SMP
multiprocessor scheduling algorithm up to now. The tributes
for this are tight requirements to the task system. Drawbacks
of the algorithm are restrictions to periodic tasks systems and
quantized task execution time. Typical embedded real-time
do not fulfill this restrictions. In this paper we address these
restrictions and present an extended scheduling algorithm,
based on Pfair scheduling, with weaker requirements. In a
scheduling simulation we evaluate utilization bounds of the
extended algorithm.

Keywords: Real-time systems, multiprocessors, dynamic
scheduling, proportionate fairness, Pfair

l. Introduction

Scheduling a taskset 7 = {7, ..., T} under real-time
constraints on multiple processing resources P,,, where
each P, is a copy of the same processing resource
vV n € M for , has been widely studied in the last two
decades.

One group are partitioning approaches which statically
map tasks to processing resources before runtime. The
benefit of this approach is that the scheduling problem
can be treated like in uniprocessor systems, using well
studied algorithms like Earliest Deadline First (EDF)
or Rate Monotonic (RM) [1] together with partitioning
heuristics like bin-packing variants [2], [3] or optimiza-
tion based partitioning [4]. Drawback of partitioning
approaches is less maximal system utilization [5].
Dynamic scheduling approaches assign tasks during
runtime to the processing resources, allowing to use the
complete system capacity, as long as 7 fulfills certain
requirements [5]. The consequences are overhead for
additional prioritization calculations at runtime and mi-
gration costs [6]. Proportionate-fair (PFAIR) Scheduling
[7] is a class of algorithms known to be optimal. By
restrictions to the task systems, listed below its pos-
sible to always fulfill all deadlines up to 100% system
utilization.

The following restrictions apply to pfair (7. denotes
the task property x of a task T, and for explanation we
concentrate on one task 7" and call it 7).

« Periodic task systems, meaning tasks have to be ac-
tivated periodically, with a constant time T.p between
two successive activations and deadline 7'.d equal
Tp

« Time is quantized, meaning task execution time T'.e
and task activation distance T.p have to be multiples
of a quantum @

« Task execution time T'.e has to be constant over the
complete time

In this paper we address these restrictions and intro-
duce an algorithm which is based on a variant of Pfair
scheduling called PD? [8] and extended to schedule
task systems without the restrictions mentioned above.
The remainder of this paper is organized as follows.
In the second chapter we introduce Pfair Scheduling.
Chapter 3 describes our extensions to PD?. In Chapter
4 we describe our experimental simulation setup. In the
subsequent chapter we used this simulation to evaluate
our algorithm. Finally we give a conclusion of our work.

Il. Pfair Scheduling

Proportionate-fair scheduling was introduced by
Baruah et. al [7] for real-time systems with periodic
tasks. It implies that each task 7' processing time is
assigned with respect to its weight wt(T') = T.e/T.p
with the worst case execution time T'.e and the period
T.p. Baruah et. al proved that Pfair scheduling is
optimal for scheduling a task set 7 in a multiprocessor
system with M processors iff) .. wt(T) < M [7]. The
fluid schedule fluid(T, ¢1,t2) represents the processing
time, which has to be assigned to a task T during a
time interval between ¢; and t, in this ideal manner.

. T.
AUid(T, t1, ts) = T—_;(tz —t1) (1)
The difference between the received processing time
and the fluid schedule for a Task T" at time ¢ is defined

as Lag:

Lag(T,t) = fluid(T, 0, t) — received(T,0,t) (2)

Published at ERTS 2010, Toulouse www.erts2010.org

T (6/10) e e—— _
T) ——— ———
T, — ——
w(T,)
uemn s em—— = ——
U — ——

[
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Fig. 1. Windows w(X}) of a heavy task T' with weight 6/10 and
light task U with weight 3/7. Subtasks 71, ...,7s and Uy, ..., Us have
to be scheduled in there window to guarantee pfairness.

Informally, if less processing time than the fluid sched-
ule was allocated to a task it has a positive Lag and a
negative Lag otherwise.

Pfair scheduling works with a quantum based model.
Let @ denote a quantum, then P-fairness implies that
the maximal Lag is one quantum.

lLag(T,t)| < Q VT,t (3)

A task is split in a number of subtasks 71, ..., 7. We
denote T}, the k" subtask of task T. Each T}, has the
execution time of one quantum. This requires that the
execution time of all subtasks |{T1, ..., T} }| x @ is equal
to T.e. To fulfill (3), a subtask T}, has to be scheduled in
a time window w(T}), starting with the pseudo-release
r(Ty) and the pseudo-deadline d(T}) (| =] is the highest
integer, smaller or equal to z; [z] is the smallest integer,
higher or equal to x).

HT}) = L’jt(‘Tl)J)
d(Ty) = {WTI(GTJ -1 (5)

We call the smallest time division, where a complete
subtask can be executed a slot ¢t. Depending on the
weight of a task a window has a number of slots ¢,
available for scheduling subtask Ty.

-] Jiga] o

To realize the Pfair scheduling concept different
scheduling policies has been published. For a system
with two processors Anderson and Srinivasan proved
that scheduling the subtasks after an Earliest-Pseudo-
Deadline-First EPDF scheme is optimal [9] (They used
pseudo to differ between the subtask and task dead-
line). For more general systems with more than two
processors, tie-breaking rules have to be applied. In this
paper we focus on the variant PD? [8] which is known
to be the most efficient beside PF [7] and PD [10]
because it uses only two additional tie-breaking rules,
which can be calculated efficiently during runtime. In
the following we define the PD? policies. The = and <

operators are used to describe the scheduling prioriti-
zation: subtask X; has to be preferred before subtask
Y; when X; - Y}, Y; has to be preferred before subtask
X, when X; <Yj;, and otherwise the next policy has to
be evaluated. If there is no further policy the selection
is arbitrary.

Policy 1 (Pseudo-Deadline):

X =Y if d(X;) < d(Y;); Xs <Y if d(X;) > d(Y5).

As above already mentioned, d(7T}) is the pseudo-
deadline and this rule is equal at each Pfair algorithm.
As example shows figure 1 the windows for the sub-
tasks of two task 7' and U with a weight of 6/10
and 3/7. The pseudo-deadlines of T’s subtasks are
{d(TY), ...,d(Ts)} = {2,4,5,7,9,10}.

Policy 2 (Overlapping-Bit):
X; = Y if b(X;) > b(Y;); Xi < Y; if b(X;) < b(Y;).
The overlapping bit b(T}) denotes the overlapping of
two successive subtask windows T} and T4, of a Task
T.
1, if d(Ty) > r(Tkt1)
b(Ty) = . 7
(i) { 0 . if d(Ty) < r(Ter) (7)

PD? prefers subtasks with overlapping windows, be-
cause delaying such a subtask means that the succes-
sive subtask has a smaller window to be scheduled.
In figure 1 the overlapping-bits of 7’s subtasks are
{o(Th),...,b(Ts)} = {1,1,0,1,1,0}.

Policy 3 (Group-Deadline):

X; =Y, if D(X;) > D(Y;); X; <Y, if D(X;) < D(Yj).
The group-deadline concerns the effect of schedule
decision of a subtask for its subsequent subtasks. Let
T;,...,Tr be a sequence of subtasks of a heavy task
T (heavy means wt(T) > 0.5) such that « < j < k
with a window of length |w(T})| = 2 and T}, either of
length [w(T})| = 3 or [w(Ty)| =2 A b(Tj41) = 0. Then
scheduling subtask T in the last slot of its window w;
results in scheduling all subsequent subtasks in there
last slot, excepted subtask T).; because there are 2
slots left. Therefore the sequence T, ..., Ti, can be seen
as one subtask-unit where scheduling one subtask in
the last slot results in scheduling each subsequent
subtask in its last slot, otherwise pseudo-deadlines are
missed. The last time slot of this unit is d(T;) + 1 which
is called group-deadline. Formally, the group-deadline
D(T},) can be calculated for heavy tasks by (8) [11].

[y | > (1= wr(r) |

D(T) = 1— wi(T)

if wt(T) > 0.5

(8)
Furthermore Srinivasan [11] proved for light
tasks (wt(T) < 0.5) D(T) = 0V T, € T. In
figure 1 the group-deadlines of T's subtasks are
{D(TY),...,D(Ts)} = {3,5,5,8,10,10}. At task U each
window has at least 2 slots left, when the precedent
subtask is scheduled in the last slot.

lll. Partly PFAIR Scheduling

In this chapter we present an extended algorithm,
based on the PD? policies, called PD? . It allows
heterogeneous tasks systems instead of periodic task
systems, and relieves the restriction from quantized
task execution time and periodicity. As long as we
modify only task properties, used for the calculation of
the original PD? policies, we denote T.x — T.z’ the
replacement of the task property 7.z by the property
T

A. Heterogeneous task systems

Periodic task systems are defined by a constant value
for the time between two successive activations of
a task. Heterogeneous task systems consist of task
activation schemes where this value can change with
the task instance. This e.g. can be a sensor triggered
activation, dependent on physical values.

We use the following definition: In a heterogeneous task
system, a task 7" releases a number of jobs T%7. If we
denote T.z"7 to be the property of the ;' job of task
T?, then let T.p*7 denote the interarrival time of the job
T%J and T%/*!. For the calculation of the scheduling
policies we use the minimal of the interarrival time:

: T.p/ = min (T.p"7) (9)

Tp—Tp i

B. Variable subtask execution time

As already mentioned, Pfair scheduling works with a
quantum based timing model, where after each quan-
tum @ a schedule decision is made for the next time
slot. In order to minimize caching overhead and guar-
anteeing data consistency it is beneficial to provide
execution time without interruption by other tasks. This
implies a variable subtask execution time and schedul-
ing decision after each finished subtask. We present
here the cooperative variant, where the time left for a
subtask is used to process the next schedule decision,
when the subtask execution time is smaller than Q.
The restrictions for the execution times Tj.e*/ of the
k' subtask of the ;" job of a task 7" are the following.
The subtask execution time of each subtask has to be
smaller than one quantum Q.

Tk:~ei7j < Q v i7j7 k (10)

The count of subtasks of a task multiplied with @ has
to be smaller or equal than the interarrival time of the
job T.p*J.

T, T} Q < Tp™ (11)

Because of the variation in the subtask execution time
the following modification of the policies occurs:

Te—Te : Te =|{T",..,T":}|Q (12)

IV. The Experimental Setup

This chapter describes a simulative approach for the
investigation of the real time requirements. We used
a discrete-event based simulation [12] with a model of
the hardware and software characteristics. During the
simulated time, a trace is generated with a number of
state transitions of the system. We concentrate here
on the state transitions of the tasks relevant for the
evaluation of the real time properties.
Buttazzo [13] introduced several real time metrics and
Konig et. al [14] presented how they can be applied on
the trace of a simulation.
The lateness 17 of the j*" job of task 7" is calculated
by

[= — i (13)

which is equivalent to the time left until reaching the
deadline. The lateness is negative when the finish-
ing time f%7 is smaller the absolute deadline d*7.
For a measure of deadline-compliance for a complete
taskset, we determine for each task the worst job and
norm this with the relative deadline D;. We define the
maximal value of all tasks in a taskset as maximal
normed lateness L(7).

max (li’j)

L(7) = max J€T:

_ 14
€T Dz ()

V. Simulation Results

For the evaluation we compared PD?, to a partitioning
approach with rate monotonic (RM) scheduling. The
task to processor assignment was done using First-
Fit Decreasing (FFD) and Worst-Fit Decreasing (WFD)
heuristics [2], [3].

For a case study we analyzed an existing automo-
tive powertrain heterogeneous taskset for a dualcore
SMP processor. In a monte carlo analysis we gener-
ated randomly task sets close to the existing taskset
with variable subtask execution times, to determine
the utilization bound where the deadlines are missed.
Thereby the subtask execution times differed within an
interval of 100-300 us. The other task properties like
activation schemes, deadlines, priorities, and number
of subtasks stayed constant. The deadlines and periods
for the tasks of a taskset are in a range of 0.6-1000ms.
The variance results in different system utilization

‘e
Usys = Z Ti.p (15)

1ET

Figure 2 shows the resulting L for the partitioning
approaches FFD and WFD with RM scheduling and
our extended Pfair algorithm. The resulting tasksets are
clustered by their system utilization. For each algorithm
and cluster statistical analysis are done. The symbol
represents the median L, the box the 99% confidence
interval for the median and the whispers the 99%

1.0

| © PD2e
A RM-FFD
° RM-WFD

0.5
1

T T T T T T T T T T T T T T T
(1.42,1.45] (1.48,151] (154,157] (16,1.63] (1.66,1.69] (1.72,1.75] (1.781.81] (1.84,1.87]

System Utilization

Fig. 2. Maximum Normed Lateness L of a randomly generated
tasksets clustered by system utilization for a dualcore SMP proces-
Ssor.

confidence interval of the maximal and minimal L in
this system utilization cluster.

It can be seen that WFD misses deadlines even at low
utilizations. FFD allows for the generated tasksets a
utilization of ~1.7 until first deadline misses occur. Even
though the L values in the low utilization area are worse
than for the other algorithms, PD?,_ schedules nearly all
tasksets over the complete utilization range 1.42 —1.87.
The huge range of the whisper at the partitioning
approach and the small at PD?, can be explained
by the non-work-conserving processing (meaning the
processor is set to idle instead of tasks are ready)
of PD? . Therefore PD?, schedules the tasks in the
manner that jitters are lower than at work-conserving
approaches. At the partitioning approach, L strongly
depends on the taskset, whereby at PD? , L is nearly
taskset independent.

VI. Conclusion

In this paper we propose an extension to the Pfair
scheduling algorithm PD? which allows handling het-
erogeneous task systems with variable subtask exe-
cution times. The results of the systematic simulation
approach shows that (partly) pfairness can achieve an
immense benefit according maximal system utilization
in comparison with partitioning approaches like bin-
packing and uniprocessor scheduling algorithms like
RM.

References

[1] C. L. Liu and J. W. Layland, “Scheduling algorithms for multi-
programming in a hard real-time environment,” Journal of the
Association of Computing Machinery, vol. 20, no. 1, January
1973.

[2] J. M. Lopez, J. L. Diaz, and D. F. Garcia, “Utilization bounds for
edf scheduling on real-time multiprocessor systems,” Real-Time
Systems, vol. 28, no. 1, pp. 39-68, 2004.

[3] N. W. Fisher, “The multiprocessor real-time scheduling of gen-
eral task systems,” Ph.D. dissertation, University of North Car-
olina, 2007.

[4] M. Deubzer, U. Margull, J. Mottok, M. Niemetz, and G. Wirrer,
“Partitionierungs-scheduling von automotive restricted tasksys-
temen auf multiprozessorplattformen,” Proceedings of the Sec-
ond Embedded Software Engineering Congress (accepted for
publishing), 2009.

[5] J. Carpenter, S. Funk, P. Holman, A. Srinivasan, J. Anderson,
and S. Baruah, “A categorization of real-time multiprocessor
scheduling problems and algorithms,” Handbook on Scheduling
Algorithms, Methods, and Models, 2004.

[6] G. Stamatescu, M. Deubzer, J. Mottok, and D. Popescu, “Migra-
tion overhead in multiprocessor scheduling,” Proceedings of the
Second Embedded Software Engineering Congress (accepted
for publishing), 2009.

[7] S. Baruah, N. Cohen, C. Plaxton, and D. Varvel, “Proportionate
progress: a notion of fairness in resource allocation,” Algorith-
mica, vol. 15, pp. 600-625, 1996.

[8] J. Anderson and A. Srinivasan, “Mixed Pfair/ERfair scheduling of
asynchronous periodic tasks,” Proceedings of the 13th Euromi-
cro Conference on Realtime Systems, pp. 76-85, June 2001.

[9] J. Anderson and A. Srinivasana, “Pfair scheduling: beyond
periodic task systems,” Proceedings of the Seventh International
Conference on Real-time Computing Systems and Applications,
pp. 297-306, December 2000.

[10] S. Baruah, J. Gehrke, and C. G. Plaxton, “Fast scheduling of
periodic tasks on multiple resources,” Proceedings of the 9th
International Parallel Processing Symposium, pp. 280-288, April
1995.

[11] A. Srinivasan, “Efficient and Flexible Fair Scheduling of Real-
time Tasks on Multiprocessors,” Ph.D. dissertation, University of
North Carolina, 2003.

[12] S. Samii, S. Rafiliu, P. Eles, and Z. Peng, “A simulation method-
ology for worst-case response time estimation of distributed
real-time systems,” in Proceedings of the conference on Design,
automation and test in Europe. ACM New York, NY, USA, 2008,
pp. 556-561.

[13] G. C. Buttazzo, Hard Real-Time Computing Systems. Boston
Dordrecht London: Kluwer Academic Publishers, 2002.

[14] F. Koénig, D. Boers, F. Slomka, U. Margull, M. Niemetz, and
G. Wirrer, “Application specific performance indicators for quan-
titative evaluation of the timing behavior for embedded real-
time systems,” in Proceedings of the conference on Design,
automation and test in Europe, 2009.

